Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 394
Filtrar
1.
Nat Commun ; 15(1): 6080, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030239

RESUMO

Dengue fever represents a significant medical and socio-economic burden in (sub)tropical regions, yet antivirals for treatment or prophylaxis are lacking. JNJ-A07 was described as highly active against the different genotypes within each serotype of the disease-causing dengue virus (DENV). Based on clustering of resistance mutations it has been assumed to target DENV non-structural protein 4B (NS4B). Using a photoaffinity labeling compound with high structural similarity to JNJ-A07, here we demonstrate binding to NS4B and its precursor NS4A-2K-NS4B. Consistently, we report recruitment of the compound to intracellular sites enriched for these proteins. We further specify the mechanism-of-action of JNJ-A07, which has virtually no effect on viral polyprotein cleavage, but targets the interaction between the NS2B/NS3 protease/helicase complex and the NS4A-2K-NS4B cleavage intermediate. This interaction is functionally linked to de novo formation of vesicle packets (VPs), the sites of DENV RNA replication. JNJ-A07 blocks VPs biogenesis with little effect on established ones. A similar mechanism-of-action was found for another NS4B inhibitor, NITD-688. In summary, we unravel the antiviral mechanism of these NS4B-targeting molecules and show how DENV employs a short-lived cleavage intermediate to carry out an early step of the viral life cycle.


Assuntos
Antivirais , Vírus da Dengue , Dengue , Proteínas não Estruturais Virais , Replicação Viral , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/genética , Vírus da Dengue/fisiologia , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Humanos , Dengue/virologia , Dengue/tratamento farmacológico , Sorogrupo , RNA Helicases/metabolismo , RNA Helicases/antagonistas & inibidores , RNA Helicases/genética , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Ligação Proteica , Animais , Organelas/metabolismo , Organelas/efeitos dos fármacos , Proteases Virais , Aminofenóis , Proteínas de Membrana , Indóis , RNA Helicases DEAD-box , Nucleosídeo-Trifosfatase , Butiratos
2.
Vaccines (Basel) ; 12(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39066376

RESUMO

We recently showed that an adapted SARS-CoV-2 vaccine with wildtype and BA.4/BA.5 Omicron subtype epitopes induced a broad short-term immune response in hemodialysis patients. Antibodies with protective capacity were boosted significantly after a follow-up period of 3 weeks following a fifth vaccine dose. However, data on the longevity of the humoral response after bivalent vaccination are lacking but urgently needed to make recommendations for further booster vaccinations in this patient group. This study is an extension of our previously published data including 40 patients on hemodialysis with a follow-up period of 12 months after an adapted booster vaccine dose. We performed a detailed characterization of humoral immune responses and assessed breakthrough infections. In addition, the severity of breakthrough infections was assessed using an established grading system. Anti-S1 IgG and surrogate neutralizing antibodies significantly decreased during the period of 12 months (p < 0.01 and p < 0.001, respectively). Live-virus neutralizing antibodies against the wildtype and the BA.5 subtype also significantly decreased over time (p < 0.01 and p < 0.01, respectively). However, even 12 months after administration of the adapted vaccine dose, all 40/40 (100%) of hemodialysis patients showed detectable SARS-CoV-2 wildtype neutralization activity, with 35/40 (88%) also exhibiting detectable BA.5 subtype neutralization activity. During follow-up, 13/40 (33%) patients contracted a SARS-CoV-2 breakthrough infection, among which 12 cases were categorized as asymptomatic or mild, while only 1 case was classified as moderate disease activity. Thus, bivalent booster vaccination seems to induce a sustained immune response in hemodialysis patients over a period of 12 months with breakthrough infections occurring frequently but predominantly manifesting as asymptomatic or mild.

3.
Gastroenterology ; 167(3): 522-537, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38636680

RESUMO

BACKGROUND & AIMS: High expression of phosphatidylinositol 4-kinase III alpha (PI4KIIIα) correlates with poor survival rates in patients with hepatocellular carcinoma. In addition, hepatitis C virus (HCV) infections activate PI4KIIIα and contribute to hepatocellular carcinoma progression. We aimed at mechanistically understanding the impact of PI4KIIIα on the progression of liver cancer and the potential contribution of HCV in this process. METHODS: Several hepatic cell culture and mouse models were used to study the functional importance of PI4KIIIα on liver pathogenesis. Antibody arrays, gene silencing, and PI4KIIIα-specific inhibitor were applied to identify the involved signaling pathways. The contribution of HCV was examined by using HCV infection or overexpression of its nonstructural protein. RESULTS: High PI4KIIIα expression and/or activity induced cytoskeletal rearrangements via increased phosphorylation of paxillin and cofilin. This led to morphologic alterations and higher migratory and invasive properties of liver cancer cells. We further identified the liver-specific lipid kinase phosphatidylinositol 3-kinase C2 domain-containing subunit gamma (PIK3C2γ) working downstream of PI4KIIIα in regulation of the cytoskeleton. PIK3C2γ generates plasma membrane phosphatidylinositol 3,4-bisphosphate-enriched, invadopodia-like structures that regulate cytoskeletal reorganization by promoting Akt2 phosphorylation. CONCLUSIONS: PI4KIIIα regulates cytoskeleton organization via PIK3C2γ/Akt2/paxillin-cofilin to favor migration and invasion of liver cancer cells. These findings provide mechanistic insight into the contribution of PI4KIIIα and HCV to the progression of liver cancer and identify promising targets for therapeutic intervention.


Assuntos
Fatores de Despolimerização de Actina , Carcinoma Hepatocelular , Movimento Celular , Citoesqueleto , Neoplasias Hepáticas , Invasividade Neoplásica , Paxilina , Transdução de Sinais , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Humanos , Animais , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Paxilina/metabolismo , Camundongos , Fatores de Despolimerização de Actina/metabolismo , Fatores de Despolimerização de Actina/genética , Fosforilação , Hepacivirus , Linhagem Celular Tumoral , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Células Hep G2 , Hepatite C/patologia , Hepatite C/metabolismo , Hepatite C/virologia , Interferência de RNA
4.
PLoS Pathog ; 20(4): e1012163, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38648214

RESUMO

Virus discovery by genomics and metagenomics empowered studies of viromes, facilitated characterization of pathogen epidemiology, and redefined our understanding of the natural genetic diversity of viruses with profound functional and structural implications. Here we employed a data-driven virus discovery approach that directly queries unprocessed sequencing data in a highly parallelized way and involves a targeted viral genome assembly strategy in a wide range of sequence similarity. By screening more than 269,000 datasets of numerous authors from the Sequence Read Archive and using two metrics that quantitatively assess assembly quality, we discovered 40 nidoviruses from six virus families whose members infect vertebrate hosts. They form 13 and 32 putative viral subfamilies and genera, respectively, and include 11 coronaviruses with bisegmented genomes from fishes and amphibians, a giant 36.1 kilobase coronavirus genome with a duplicated spike glycoprotein (S) gene, 11 tobaniviruses and 17 additional corona-, arteri-, cremega-, nanhypo- and nangoshaviruses. Genome segmentation emerged in a single evolutionary event in the monophyletic lineage encompassing the subfamily Pitovirinae. We recovered the bisegmented genome sequences of two coronaviruses from RNA samples of 69 infected fishes and validated the presence of poly(A) tails at both segments using 3'RACE PCR and subsequent Sanger sequencing. We report a genetic linkage between accessory and structural proteins whose phylogenetic relationships and evolutionary distances are incongruent with the phylogeny of replicase proteins. We rationalize these observations in a model of inter-family S recombination involving at least five ancestral corona- and tobaniviruses of aquatic hosts. In support of this model, we describe an individual fish co-infected with members from the families Coronaviridae and Tobaniviridae. Our results expand the scale of the known extraordinary evolutionary plasticity in nidoviral genome architecture and call for revisiting fundamentals of genome expression, virus particle biology, host range and ecology of vertebrate nidoviruses.


Assuntos
Coronavirus , Genoma Viral , Nidovirales , Filogenia , Animais , Nidovirales/genética , Coronavirus/genética , Coronavirus/classificação , Vertebrados/virologia , Vertebrados/genética , Peixes/virologia , Evolução Molecular , Mineração de Dados , Infecções por Nidovirales/virologia , Infecções por Nidovirales/genética
6.
Nat Microbiol ; 9(4): 905-921, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38528146

RESUMO

Some viruses are rarely transmitted orally or sexually despite their presence in saliva, breast milk, or semen. We previously identified that extracellular vesicles (EVs) in semen and saliva inhibit Zika virus infection. However, the antiviral spectrum and underlying mechanism remained unclear. Here we applied lipidomics and flow cytometry to show that these EVs expose phosphatidylserine (PS). By blocking PS receptors, targeted by Zika virus in the process of apoptotic mimicry, they interfere with viral attachment and entry. Consequently, physiological concentrations of EVs applied in vitro efficiently inhibited infection by apoptotic mimicry dengue, West Nile, Chikungunya, Ebola and vesicular stomatitis viruses, but not severe acute respiratory syndrome coronavirus 2, human immunodeficiency virus 1, hepatitis C virus and herpesviruses that use other entry receptors. Our results identify the role of PS-rich EVs in body fluids in innate defence against infection via viral apoptotic mimicries, explaining why these viruses are primarily transmitted via PS-EV-deficient blood or blood-ingesting arthropods rather than direct human-to-human contact.


Assuntos
Líquidos Corporais , Vesículas Extracelulares , Vírus , Infecção por Zika virus , Zika virus , Feminino , Humanos , Fosfatidilserinas , Ligação Viral
7.
Antiviral Res ; 225: 105856, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447646

RESUMO

Four years after its outbreak, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a global challenge for human health. At its surface, SARS-CoV-2 features numerous extensively glycosylated spike proteins. This glycan coat supports virion docking and entry into host cells and at the same time renders the virus less susceptible to neutralizing antibodies. Given the high genetic plasticity of SARS-CoV-2 and the rapid emergence of immune escape variants, targeting the glycan shield by carbohydrate-binding agents emerges as a promising strategy. However, the potential of carbohydrate-targeting reagents as viral inhibitors remains underexplored. Here, we tested seven plant-derived carbohydrate-binding proteins, called lectins, and one crude plant extract for their antiviral activity against SARS-CoV-2 in two types of human lung cells: A549 cells ectopically expressing the ACE2 receptor and Calu-3 cells. We identified three lectins and an Allium porrum (leek) extract inhibiting SARS-CoV-2 infection in both cell systems with selectivity indices (SI) ranging between >2 and >299. Amongst these, the lectin Concanavalin A (Con A) exerted the most potent and broad activity against a panel of SARS-CoV-2 variants. We used multiplex super-resolution microscopy to address lectin interactions with SARS-CoV-2 and its host cells. Notably, we discovered that Con A not only binds to SARS-CoV-2 virions and their host cells, but also causes SARS-CoV-2 aggregation. Thus, Con A exerts a dual mode-of-action comprising both, antiviral and virucidal, mechanisms. These results establish Con A and other plant lectins as candidates for COVID-19 prevention and basis for further drug development.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Cebolas/metabolismo , Concanavalina A/metabolismo , Lectinas/metabolismo , Polissacarídeos , Antivirais/farmacologia , Extratos Vegetais , Glicoproteína da Espícula de Coronavírus
8.
Infect Genet Evol ; 119: 105577, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403035

RESUMO

In January 2021, the monitoring of circulating variants of SARS-CoV-2 was initiated in Germany under the Corona Surveillance Act, which was discontinued after July 2023. This initiative aimed to enhance pandemic containment, as specific amino acid changes, particularly in the spike protein, were associated with increased transmission and reduced vaccine efficacy. Our group conducted whole genome sequencing using the ARTIC protocol (currently V4) on Illumina's NextSeq 500 platform (and, starting in May 2023, on the MiSeq DX platform) for SARS-CoV-2 positive specimen from patients at Heidelberg University Hospital, associated hospitals, and the public health office in the Rhine-Neckar/Heidelberg region. In total, we sequenced 26,795 SARS-CoV-2-positive samples between January 2021 and July 2023. Valid sequences, meeting the requirements for upload to the German electronic sequencing data hub (DESH) operated by the Robert Koch Institute (RKI), were determined for 24,852 samples, and the lineage/clade could be identified for 25,912 samples. The year 2021 witnessed significant dynamics in the circulating variants in the Rhine-Neckar/Heidelberg region, including A.27.RN, followed by the emergence of B.1.1.7 (Alpha), subsequently displaced by B.1.617.2 (Delta), and the initial occurrences of B.1.1.529 (Omicron). By January 2022, B.1.1.529 had superseded B.1.617.2, dominating with over 90%. The years 2022 and 2023 were then characterized by the dominance of B.1.1.529 and its sublineages, particularly BA.5 and BA.2, and more recently, the emergence of recombinant variants like XBB.1.5. Since the global dominance of B.1.617.2, the identified variant distribution in our local study, apart from a time delay in the spread of new variants, can be considered largely representative of the global distribution. om a time delay in the spread of new variants, can be considered largely representative of the global distribution.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Alemanha/epidemiologia , Hospitais Universitários
9.
Front Med (Lausanne) ; 11: 1337367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327708

RESUMO

Following kidney transplantation, lifelong immunosuppressive therapy is essential to prevent graft rejection. On the downside, immunosuppression increases the risk of severe infections, a major cause of death among kidney transplant recipients (KTRs). To improve post-transplant outcomes, adequate immunosuppressive therapy is therefore a challenging but vital aspect of clinical practice. Torque teno virus load (TTVL) was shown to reflect immune competence in KTRs, with low TTVL linked to an elevated risk for rejections and high TTVL associated with infections in the first year post-transplantation. Yet, little is known about the dynamics of TTVL after the first year following transplantation and how TTVL changes with respect to short-term modifications in immunosuppressive therapy. Therefore, we quantified TTVL in 106 KTRs with 108 clinically indicated biopsies, including 65 biopsies performed >12 months post-transplantation, and correlated TTVL to histopathology. In addition, TTVL was quantified at 7, 30, and 90 days post-biopsy to evaluate how TTVL was affected by changes in immunosuppression resulting from interventions based on histopathological reporting. TTVL was highest in patients biopsied between 1 and 12 months post-transplantation (N = 23, median 2.98 × 107 c/mL) compared with those biopsied within 30 days (N = 20, median 7.35 × 103 c/mL) and > 1 year post-transplantation (N = 65, median 1.41 × 104 c/mL; p < 0.001 for both). Patients with BK virus-associated nephropathy (BKVAN) had significantly higher TTVL than patients with rejection (p < 0.01) or other pathologies (p < 0.001). When converted from mycophenolic acid to a mTOR inhibitor following the diagnosis of BKVAN, TTVL decreased significantly between biopsy and 30 and 90 days post-biopsy (p < 0.01 for both). In KTR with high-dose corticosteroid pulse therapy for rejection, TTVL increased significantly between biopsy and 30 and 90 days post-biopsy (p < 0.05 and p < 0.01, respectively). Of note, no significant changes were seen in TTVL within 7 days of changes in immunosuppressive therapy. Additionally, TTVL varied considerably with time since transplantation and among individuals, with a significant influence of age and BMI on TTVL (p < 0.05 for all). In conclusion, our findings indicate that TTVL reflects changes in immunosuppressive therapy, even in the later stages of post-transplantation. To guide immunosuppressive therapy based on TTVL, one should consider inter- and intraindividual variations, as well as potential confounding factors.

11.
Angew Chem Int Ed Engl ; 63(10): e202318615, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38126926

RESUMO

Cell-penetrating peptides (CPPs) play a significant role in the delivery of cargos into human cells. We report the first CPPs based on peptide-bismuth bicycles, which can be readily obtained from commercially available peptide precursors, making them accessible for a wide range of applications. These CPPs enter human cells as demonstrated by live-cell confocal microscopy using fluorescently labelled peptides. We report efficient sequences that demonstrate increased cellular uptake compared to conventional CPPs like the TAT peptide (derived from the transactivating transcriptional activator of human immunodeficiency virus 1) or octaarginine (R8 ), despite requiring only three positive charges. Bicyclization triggered by the presence of bismuth(III) increases cellular uptake by more than one order of magnitude. Through the analysis of cell lysates using inductive coupled plasma mass spectrometry (ICP-MS), we have introduced an alternative approach to examine the cellular uptake of CPPs. This has allowed us to confirm the presence of bismuth in cells after exposure to our CPPs. Mechanistic studies indicated an energy-dependent endocytic cellular uptake sensitive to inhibition by rottlerin, most likely involving macropinocytosis.


Assuntos
Peptídeos Penetradores de Células , Humanos , Peptídeos Penetradores de Células/química , Endocitose/fisiologia , Bismuto , Ciclismo , Pinocitose
12.
Nat Commun ; 14(1): 8045, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052817

RESUMO

Zika virus (ZIKV) has emerged as a global health issue, yet neither antiviral therapy nor a vaccine are available. ZIKV is an enveloped RNA virus, replicating in the cytoplasm in close association with ER membranes. Here, we isolate ER membranes from ZIKV-infected cells and determine their proteome. Forty-six host cell factors are enriched in ZIKV remodeled membranes, several of these having a role in redox and methylation pathways. Four proteins are characterized in detail: thioredoxin reductase 1 (TXNRD1) contributing to folding of disulfide bond containing proteins and modulating ZIKV secretion; aldo-keto reductase family 1 member C3 (AKR1C3), regulating capsid protein abundance and thus, ZIKV assembly; biliverdin reductase B (BLVRB) involved in ZIKV induced lipid peroxidation and increasing stability of viral transmembrane proteins; adenosylhomocysteinase (AHCY) indirectly promoting m6A methylation of ZIKV RNA by decreasing the level of S- adenosyl homocysteine and thus, immune evasion. These results highlight the involvement of redox and methylation enzymes in the ZIKV life cycle and their accumulation at virally remodeled ER membranes.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Zika virus/genética , Metilação , Provírus , Replicação Viral/fisiologia , Proteínas Virais/metabolismo , Oxirredução
13.
J Med Virol ; 95(12): e29303, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38082556

RESUMO

The development of bivalent booster vaccines addresses the ongoing evolution of the emerging B.1.1.529 (omicron) variant subtypes that are known to escape vaccine-induced neutralizing antibody response. Little is known about the immunogenicity and reactogenicity of bivalent mRNA vaccines in hemodialysis patients with impaired vaccine response. In this prospective, observational cohort study, we analyzed SARS-CoV-2 anti-S1 IgG, surrogate neutralizing antibodies (SNA), and live-virus neutralization against the SARS-CoV-2 wildtype and the BA.5 variant in 42 hemodialysis patients with and without prior SARS-CoV-2 infection before and after an additional fifth bivalent vaccine dose. Anti-S1 IgG and SNA were significantly higher in hemodialysis patients with prior infection than in patients without infection (p < 0.001 and p < 0.01, respectively). In patients without prior infection, both antibody levels increased, and live-virus neutralizing antibodies against the wildtype and the BA.5 variant were correspondingly significantly higher after bivalent booster vaccination (p < 0.001 for both). Conversely, in patients with prior infection, anti-S1 IgG and SNA did not alter significantly, and bivalent booster vaccination did not induce additional humoral immune response against the SARS-CoV-2 wildtype and the BA.5 variant. Thus, bivalent mRNA vaccines might increase humoral responses in hemodialysis patients without prior infection. Larger clinical trials are needed to help guide vaccination strategies in these immunocompromised individuals.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Estudos Prospectivos , SARS-CoV-2/genética , Vacinas de mRNA , Vacinação , Anticorpos Neutralizantes , RNA Mensageiro , Diálise Renal , Vacinas Combinadas , Imunoglobulina G , Anticorpos Antivirais
14.
Nat Commun ; 14(1): 7894, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036567

RESUMO

Coronavirus replication is associated with the remodeling of cellular membranes, resulting in the formation of double-membrane vesicles (DMVs). A DMV-spanning pore was identified as a putative portal for viral RNA. However, the exact components and the structure of the SARS-CoV-2 DMV pore remain to be determined. Here, we investigate the structure of the DMV pore by in situ cryo-electron tomography combined with subtomogram averaging. We identify non-structural protein (nsp) 3 and 4 as minimal components required for the formation of a DMV-spanning pore, which is dependent on nsp3-4 proteolytic cleavage. In addition, we show that Mac2-Mac3-DPUP-Ubl2 domains are critical for nsp3 oligomerization and crown integrity which influences membrane curvature required for biogenesis of DMVs. Altogether, SARS-CoV-2 nsp3-4 have a dual role by driving the biogenesis of replication organelles and assembly of DMV-spanning pores which we propose here to term replicopores.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Replicação Viral , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Organelas/metabolismo
15.
Nat Commun ; 14(1): 7344, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957166

RESUMO

For successful infection of host cells and virion production, enveloped viruses, including Zika virus (ZIKV), extensively rely on cellular lipids. However, how virus protein-lipid interactions contribute to the viral life cycle remains unclear. Here, we employ a chemo-proteomics approach with a bifunctional cholesterol probe and show that cholesterol is closely associated with the ZIKV structural protein prM. Bioinformatic analyses, reverse genetics alongside with photoaffinity labeling assays, and atomistic molecular dynamics simulations identified two functional cholesterol binding motifs within the prM transmembrane domain. Loss of prM-cholesterol association has a bipartite effect reducing ZIKV entry and leading to assembly defects. We propose a model in which membrane-resident M facilitates cholesterol-supported lipid exchange during endosomal entry and, together with cholesterol, creates a platform promoting virion assembly. In summary, we identify a bifunctional role of prM in the ZIKV life cycle by mediating viral entry and virus assembly in a cholesterol-dependent manner.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Zika virus/metabolismo , Internalização do Vírus , Replicação Viral , Proteínas Virais/metabolismo , Lipídeos
16.
Sci Rep ; 13(1): 20299, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985848

RESUMO

At the beginning of the COVID-19 pandemic, it was assumed that SARS-CoV-2 could be transmitted through surgical smoke generated by electrocauterization. Minimally invasive surgery (MIS) was targeted due to potentially higher concentrations of the SARS-CoV-2 particles in the pneumoperitoneum. Some surgical societies even recommended open surgery instead of MIS to prevent the potential spread of SARS-CoV-2 from the pneumoperitoneum. This study aimed to detect SARS-CoV-2 in surgical smoke during open and MIS. Patients with SARS-CoV-2 infection who underwent open surgery or MIS at Heidelberg University Hospital were included in the study. A control group of patients without SARS-CoV-2 infection undergoing MIS or open surgery was included for comparison. The trial was approved by the Ethics Committee of Heidelberg University Medical School (S-098/2021). The following samples were collected: nasopharyngeal and intraabdominal swabs, blood, urine, surgical smoke, and air samples from the operating room. An SKC BioSampler was used to sample the surgical smoke from the pneumoperitoneum during MIS and the approximate surgical field during open surgery in 15 ml of sterilized phosphate-buffered saline. An RT-PCR test was performed on all collected samples to detect SARS-CoV-2 viral particles. Twelve patients with proven SARS-CoV-2 infection underwent open abdominal surgery. Two SARS-CoV-2-positive patients underwent an MIS procedure. The control group included 24 patients: 12 underwent open surgery and 12 MIS. One intraabdominal swab in a patient with SARS-CoV-2 infection was positive for SARS-CoV-2. However, during both open surgery and MIS, none of the surgical smoke samples showed any detectable viral particles of SARS-CoV-2. The air samples collected at the end of the surgical procedure showed no viral particles of SARS-CoV-2. Major complications (CD ≥ IIIa) were more often observed in SARS-CoV-2 positive patients (10 vs. 4, p = 0.001). This study showed no detectable viral particles of SARS-CoV-2 in surgical smoke sampled during MIS and open surgery. Thus, the discussed risk of transmission of SARS-CoV-2 via surgical smoke could not be confirmed in the present study.


Assuntos
COVID-19 , Pneumoperitônio , Humanos , Pandemias/prevenção & controle , Estudos Prospectivos , SARS-CoV-2 , Fumaça , Carga Viral
17.
J Virol ; 97(11): e0087823, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37905840

RESUMO

IMPORTANCE: Remodeling of the cellular endomembrane system by viruses allows for efficient and coordinated replication of the viral genome in distinct subcellular compartments termed replication organelles. As a critical step in the viral life cycle, replication organelle formation is an attractive target for therapeutic intervention, but factors central to this process are only partially understood. In this study, we corroborate that two viral proteins, nsp3 and nsp4, are the major drivers of membrane remodeling in SARS-CoV-2 infection. We further report a number of host cell factors interacting with these viral proteins and supporting the viral replication cycle, some of them by contributing to the formation of the SARS-CoV-2 replication organelle.


Assuntos
COVID-19 , SARS-CoV-2 , Proteínas não Estruturais Virais , Replicação Viral , Humanos , Organelas/metabolismo , Proteômica , SARS-CoV-2/fisiologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
18.
Transplantation ; 107(12): e363-e369, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37798825

RESUMO

BACKGROUND: Quantification of torque teno virus (TTV) has been proposed as a surrogate parameter to monitor immunocompetence in kidney transplant recipients (KTRs) early after transplantation. However, its use in monitoring short-term changes of immunosuppression in KTRs late after transplantation requires further investigation. METHODS: In this post hoc analysis, we quantified TTV load in sera of 76 KTRs, with 43 pausing mycophenolic acid (MPA) 1 wk before to 4 wk after COVID-19 vaccination to increase vaccine response. TTV load was quantified before, 4 wk, and 3 mo postvaccination. Results were compared to 33 KTRs with continued standard immunosuppressive therapy and with 18 hemodialysis as well as 18 healthy control subjects. RESULTS: TTV load before vaccination was with a median (interquartile range) of 1.39 × 10 4 copies/milliliter (c/mL) (9.17 × 10 1 -2.66 × 10 5 c/mL) highest in KTRs compared to 1.73 × 10 3 c/mL (1.07 × 10 3 -1.31 × 10 4 c/mL) in hemodialysis patients and 1.53 × 10 2 c/mL (6.38-1.29 × 10 3 c/mL) in healthy controls. In KTRs with MPA withdrawal, TTV load decreased significantly from a median (interquartile range) of 1.11 × 10 4 c/mL (4.75 × 10 2 -1.92 × 10 5 c/mL) to 5.24 × 10 3 c/mL (6.92 × 10 2 -6.91 × 10 4 c/mL) 4-5 wk after initiation of MPA withdrawal ( P = 0.003). In patients with MPA withdrawal, TTV load was significantly inversely correlated with COVID-19 or SARS-CoV-2-specific antibodies 4 wk and 3 mo postvaccination ( P = 0.009 and P = 0.004). CONCLUSIONS: TTV load reflects changes in immunosuppressive therapy even late after transplantation, supporting its use to monitor immunocompetence in KTRs.


Assuntos
COVID-19 , Transplante de Rim , Torque teno virus , Humanos , Transplante de Rim/efeitos adversos , Vacinas contra COVID-19 , Carga Viral , Terapia de Imunossupressão , Transplantados , DNA Viral
19.
mBio ; 14(5): e0144123, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37702492

RESUMO

IMPORTANCE: Dengue virus (DENV) is a major human pathogen that can cause hemorrhagic fever and shock syndrome. One important factor of DENV pathogenicity is non-structural protein 1 (NS1), a glycoprotein that is secreted from infected cells. Here we study the mode of action of the widely used drug ivermectin, used to treat parasitic infections and recently shown to lower NS1 blood levels in DENV-infected patients. We found that ivermectin blocks the nuclear transport of transcription factors required for the expression of chaperones that support the folding and secretion of glycoproteins, including NS1. Impairing nuclear transport of these transcription factors by ivermectin or depleting them from infected cells dampens NS1 folding and thus its secretion. These results reveal a novel mode of action of ivermectin that might apply to other flaviviruses as well.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Chaperona BiP do Retículo Endoplasmático , Ivermectina/farmacologia , Ivermectina/metabolismo , Carioferinas , Chaperonas Moleculares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
20.
Viruses ; 15(8)2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37632120

RESUMO

Emerging omicron subtypes with immune escape lead to inadequate vaccine response with breakthrough infections in immunocompromised individuals such as Anti-neutrophil Cytoplasmic Antibody (ANCA)-associated vasculitis (AAV) patients. As AAV is considered an orphan disease, there are still limited data on SARS-CoV-2 vaccination and prospective studies that have focused exclusively on AAV patients are lacking. In addition, there are safety concerns regarding the use of highly immunogenic mRNA vaccines in autoimmune diseases, and further studies investigating reactogenicity are urgently needed. In this prospective observational cohort study, we performed a detailed characterization of neutralizing antibody responses against omicron subtypes and provided a longitudinal assessment of vaccine reactogenicity and AAV disease activity. Different vaccine doses were generally well tolerated and no AAV relapses occurred during follow-up. AAV patients had significantly lower anti-S1 IgG and surrogate-neutralizing antibodies after first, second, and third vaccine doses as compared to healthy controls, respectively. Live-virus neutralization assays against omicron subtypes BA.1 and BA.5 revealed that previous SARS-CoV-2 vaccines result in an inadequate neutralizing immune response in immunocompromised AAV patients. These data demonstrate that new vaccination strategies including adapted mRNA vaccines against epitopes of emerging variants are needed to help protect highly vulnerable individuals such as AAV patients.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , COVID-19 , Humanos , Vacinas contra COVID-19/efeitos adversos , Estudos Prospectivos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Anticorpos Neutralizantes , Vacinas de mRNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...