RESUMO
SUMMARY: Visium HD by 10X Genomics is the first commercially available platform capable of capturing full scale transcriptomic data paired with a reference morphology image from archived FFPE blocks at sub-cellular resolution. However, aggregation of capture regions to single cells poses challenges. Bin2cell reconstructs cells from the highest resolution data (2 µm bins) by leveraging morphology image segmentation and gene expression information. It is compatible with established Python single cell and spatial transcriptomics software, and operates efficiently in a matter of minutes without requiring a GPU. We demonstrate improvements in downstream analysis when using the reconstructed cells over default 8 µm bins on mouse brain and human colorectal cancer data. AVAILABILITY AND IMPLEMENTATION: Bin2cell is available at https://github.com/Teichlab/bin2cell, along with documentation and usage examples, and can be installed from pip. Probe design functionality is available at https://github.com/Teichlab/gene2probe.
Assuntos
Software , Camundongos , Animais , Humanos , Encéfalo/metabolismo , Encéfalo/citologia , Análise de Célula Única/métodos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Transcriptoma , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Processamento de Imagem Assistida por Computador/métodosRESUMO
The intestinal immune system is highly adapted to maintaining tolerance to the commensal microbiota and self-antigens while defending against invading pathogens1,2. Recognizing how the diverse network of local cells establish homeostasis and maintains it in the complex immune environment of the gut is critical to understanding how tolerance can be re-established following dysfunction, such as in inflammatory disorders. Although cell and molecular interactions that control T regulatory (Treg) cell development and function have been identified3,4, less is known about the cellular neighbourhoods and spatial compartmentalization that shapes microorganism-reactive Treg cell function. Here we used in vivo live imaging, photo-activation-guided single-cell RNA sequencing5-7 and spatial transcriptomics to follow the natural history of T cells that are reactive towards Helicobacter hepaticus through space and time in the settings of tolerance and inflammation. Although antigen stimulation can occur anywhere in the tissue, the lamina propria-but not embedded lymphoid aggregates-is the key microniche that supports effector Treg (eTreg) cell function. eTreg cells are stable once their niche is established; however, unleashing inflammation breaks down compartmentalization, leading to dominance of CD103+SIRPα+ dendritic cells in the lamina propria. We identify and validate the putative tolerogenic interaction between CD206+ macrophages and eTreg cells in the lamina propria and identify receptor-ligand pairs that are likely to govern the interaction. Our results reveal a spatial mechanism of tolerance in the lamina propria and demonstrate how knowledge of local interactions may contribute to the next generation of tolerance-inducing therapies.
Assuntos
Mucosa Intestinal , Mucosa , Linfócitos T Reguladores , Animais , Feminino , Masculino , Camundongos , Antígenos CD/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Perfilação da Expressão Gênica , Helicobacter hepaticus/imunologia , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Tolerância Imunológica/imunologia , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Cadeias alfa de Integrinas/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Mucosa/citologia , Mucosa/imunologia , Receptores Imunológicos/metabolismo , Receptores Imunológicos/imunologia , Análise da Expressão Gênica de Célula Única , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/citologia , TranscriptomaRESUMO
The number of studies investigating the human gastrointestinal tract using various single-cell profiling methods has increased substantially in the past few years. Although this increase provides a unique opportunity for the generation of the first comprehensive Human Gut Cell Atlas (HGCA), there remains a range of major challenges ahead. Above all, the ultimate success will largely depend on a structured and coordinated approach that aligns global efforts undertaken by a large number of research groups. In this Roadmap, we discuss a comprehensive forward-thinking direction for the generation of the HGCA on behalf of the Gut Biological Network of the Human Cell Atlas. Based on the consensus opinion of experts from across the globe, we outline the main requirements for the first complete HGCA by summarizing existing data sets and highlighting anatomical regions and/or tissues with limited coverage. We provide recommendations for future studies and discuss key methodologies and the importance of integrating the healthy gut atlas with related diseases and gut organoids. Importantly, we critically overview the computational tools available and provide recommendations to overcome key challenges.
Assuntos
Trato Gastrointestinal , Organoides , Humanos , PrevisõesRESUMO
BACKGROUND: Regulatory T (Treg) CD4 cells in mouse gut are mainly specific for intestinal antigens and play an important role in the suppression of immune responses against harmless dietary antigens and members of the microbiota. However, information about the phenotype and function of Treg cells in the human gut is limited. OBJECTIVE: We performed a detailed characterization of Foxp3+ CD4 Treg cells in human normal small intestine (SI) as well as from transplanted duodenum and celiac disease lesions. METHODS: Treg cells and conventional CD4 T cells derived from SI were subjected to extensive immunophenotyping and their suppressive activity and ability to produce cytokines assessed. RESULTS: SI Foxp3+ CD4 T cells were CD45RA-CD127-CTLA-4+ and suppressed proliferation of autologous T cells. Approximately 60% of Treg cells expressed the transcription factor Helios. When stimulated, Helios-negative Treg cells produced IL-17, IFN-γ, and IL-10, whereas Helios-positive Treg cells produced very low levels of these cytokines. By sampling mucosal tissue from transplanted human duodenum, we demonstrated that donor Helios-negative Treg cells persisted for at least 1 year after transplantation. In normal SI, Foxp3+ Treg cells constituted only 2% of all CD4 T cells, while in active celiac disease, both Helios-negative and Helios-positive subsets expanded 5- to 10-fold. CONCLUSION: The SI contains 2 subsets of Treg cells with different phenotypes and functional capacities. Both subsets are scarce in healthy gut but increase dramatically in active celiac disease.
Assuntos
Doença Celíaca , Linfócitos T Reguladores , Humanos , Animais , Camundongos , Citocinas , Intestino Delgado , Fatores de Transcrição Forkhead , Subpopulações de Linfócitos TRESUMO
Studies in mice and humans have shown that CD8+ T cell immunosurveillance in non-lymphoid tissues is dominated by resident populations. Whether CD4+ T cells use the same strategies to survey peripheral tissues is less clear. Here, examining the turnover of CD4+ T cells in transplanted duodenum in humans, we demonstrate that the majority of CD4+ T cells were still donor-derived one year after transplantation. In contrast to memory CD4+ T cells in peripheral blood, intestinal CD4+ TRM cells expressed CD69 and CD161, but only a minor fraction expressed CD103. Functionally, intestinal CD4+ TRM cells were very potent cytokine producers; the vast majority being polyfunctional TH1 cells, whereas a minor fraction produced IL-17. Interestingly, a fraction of intestinal CD4+ T cells produced granzyme-B and perforin after activation. Together, we show that the intestinal CD4+ T-cell compartment is dominated by resident populations that survive for more than 1 year. This finding is of high relevance for the development of oral vaccines and therapies for diseases in the gut.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Intestino Delgado/imunologia , Células Th1/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Feminino , Humanos , Memória Imunológica , Ativação Linfocitária , Masculino , Pessoa de Meia-IdadeRESUMO
Resident memory CD8 T (Trm) cells have been shown to provide effective protective responses in the small intestine (SI) in mice. A better understanding of the generation and persistence of SI CD8 Trm cells in humans may have implications for intestinal immune-mediated diseases and vaccine development. Analyzing normal and transplanted human SI, we demonstrated that the majority of SI CD8 T cells were bona fide CD8 Trm cells that survived for >1 yr in the graft. Intraepithelial and lamina propria CD8 Trm cells showed a high clonal overlap and a repertoire dominated by expanded clones, conserved both spatially in the intestine and over time. Functionally, lamina propria CD8 Trm cells were potent cytokine producers, exhibiting a polyfunctional (IFN-γ+ IL-2+ TNF-α+) profile, and efficiently expressed cytotoxic mediators after stimulation. These results suggest that SI CD8 Trm cells could be relevant targets for future oral vaccines and therapeutic strategies for gut disorders.