RESUMO
Complex oxide films stabilized by epitaxial growth can exhibit large populations of point defects which have important effects on their properties. The site occupancy of pulsed laser-deposited epitaxial terbium iron garnet (TbIG) films with excess terbium (Tb) is analyzed, in which the terbium:iron (Tb:Fe)ratio is 0.86 compared to the stoichiometric value of 0.6. The magnetic properties of the TbIG are sensitive to site occupancy, exhibiting a higher compensation temperature (by 90 K) and a lower Curie temperature (by 40 K) than the bulk Tb3 Fe5 O12 garnet. Data derived from X-ray core-level spectroscopy, magnetometry, and molecular field coefficient modeling are consistent with occupancy of the dodecahedral sites by Tb3+ , the octahedral sites by Fe3+ , Tb3+ and vacancies, and the tetrahedral sites by Fe3+ and vacancies. Energy dispersive X-ray spectroscopy in a scanning transmission electron microscope provides direct evidence of TbFe antisites. A small fraction of Fe2+ is present, and oxygen vacancies are inferred to be present to maintain charge neutrality. Variation of the site occupancies provides a path to considerable manipulation of the magnetic properties of epitaxial iron garnet films and other complex oxides, which readily accommodate stoichiometries not found in their bulk counterparts.
RESUMO
Complex-oxide materials exhibit a vast range of functional properties desirable for next-generation electronic, spintronic, magnetoelectric, neuromorphic, and energy conversion storage devices1-4. Their physical functionalities can be coupled by stacking layers of such materials to create heterostructures and can be further boosted by applying strain5-7. The predominant method for heterogeneous integration and application of strain has been through heteroepitaxy, which drastically limits the possible material combinations and the ability to integrate complex oxides with mature semiconductor technologies. Moreover, key physical properties of complex-oxide thin films, such as piezoelectricity and magnetostriction, are severely reduced by the substrate clamping effect. Here we demonstrate a universal mechanical exfoliation method of producing freestanding single-crystalline membranes made from a wide range of complex-oxide materials including perovskite, spinel and garnet crystal structures with varying crystallographic orientations. In addition, we create artificial heterostructures and hybridize their physical properties by directly stacking such freestanding membranes with different crystal structures and orientations, which is not possible using conventional methods. Our results establish a platform for stacking and coupling three-dimensional structures, akin to two-dimensional material-based heterostructures, for enhancing device functionalities8,9.
RESUMO
We demonstrate a conceptually new mechanism to generate an in-plane spin current with out-of-plane polarization in a nonmagnetic metal, detected by nonlocal thermoelectric voltage measurement. We generate out-of-plane (∇T_{OP}) and in-plane (∇T_{IP}) temperature gradients, simultaneously, acting on a magnetic insulator-Pt bilayer. When the magnetization has a component oriented perpendicular to the plane, ∇T_{OP} drives a spin current into Pt with out-of-plane polarization due to the spin Seebeck effect. ∇T_{IP} then drags the resulting spin-polarized electrons in Pt parallel to the plane against the gradient direction. This finally produces an inverse spin Hall effect voltage in Pt, transverse to ∇T_{IP} and proportional to the out-of-plane component of the magnetization. This simple method enables the detection of the perpendicular magnetization component in a magnetic insulator in a nonlocal geometry.
RESUMO
Triplet ground-state organic molecules are interesting with respect to several emerging technologies but typically exhibit limited stability. We report two organic diradicals, one of which possesses a triplet ground state (2J/kB = 234 ± 36 K) and robust stability at elevated temperatures. We are able to sublime this high-spin diradical under high vacuum at 140 °C with no significant decomposition.