Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(38): 26071-26080, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39284289

RESUMO

Two novel ternary air-stable transition-metal carbodiimides, MnHf(NCN)3 and FeHf(NCN)3, were synthesized via solid-state metathesis using either ZnNCN or Na2NCN as the carbodiimide source and the corresponding binary metal chlorides. These two phases are the first examples of transition-metal carbodiimides with an AB(NCN)3 composition, akin to ubiquitous ABO3 perovskite oxides. The crystal structure of MnHf(NCN)3 was determined and refined from powder X-ray diffraction (XRD) data in the non-centrosymmetric space group P6322 allowing for chirality, the assignment of which is supported by second-harmonic generation (SHG) measurements. FeHf(NCN)3 was found to crystallize isotypically, and the presence of iron(II) in a high spin state was confirmed by 57Fe Mößbauer spectroscopy. The structures are revealed to be NiAs-derived and can be described as a hexagonal stack of NCN2- anions with metal cations occupying 2/3 of the octahedral voids. Both IR spectroscopic measurements and DFT calculations agree that the NCN2- unit is a bent carbodiimide with C2v symmetry, necessary to account for the size difference present in such a vacancy-ordered structure. Magnetic studies reveal predominantly strong antiferromagnetic interactions but no long-range order between the paramagnetic Mn2+ centers, likely due to the dilution of Mn2+ over the octahedral sites or perhaps even due to some degree of magnetic frustration. The optical and electrochemical properties of MnHf(NCN)3 were then studied, revealing a wide band gap of 3.04 eV and p-type behavior.

2.
Inorg Chem ; 63(34): 15762-15771, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39133057

RESUMO

The study of the structural stability of carbonates under different pressure and temperature conditions is important for modeling the carbon budget in the Earth's interior and the stability of carbonation products of carbon capture and storage (CCS) solutions. In this work, we confirm the existence of the two dense polymorphs of the hydrated magnesium carbonate MgCO3·3H2O nesquehonite mineral previously reported, and we characterize their structures using synchrotron single-crystal X-ray diffraction at 3.1 and 11.6 GPa. Phase transitions entail the distortion and atomic rearrangement of the Mg-centered polyhedra and the tilting of the [CO3] carbonate units. In particular, the Mg coordination number increases from 6 in nesquehonite to 7 in the second high-pressure phase, while maintaining a topology based on complex MgCO3(H2O)2 chains. We also studied their vibrational behavior upon compression using Raman spectroscopy and complemented the experimental results with density-functional theory (DFT) calculations. The role played by hydrogen bonds in the compressibility and the polymorphism of this hydrated carbonate is also discussed.

3.
Chem Commun (Camb) ; 60(74): 10208-10211, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39206736

RESUMO

The anhydrous alkaline earth metal carbonate Be(CO3) was synthesized in a laser-heated diamond anvil cell at moderate pressures and temperatures (20(2) GPa and 1500(200) K) by a reaction of BeO with CO2. It crystallizes in the acentric, trigonal space group P3121 with Z = 3. The crystal structure was obtained from synchrotron single crystal X-ray diffraction data and confirmed by density functional theory-based calculations in combination with Raman spectroscopy. Second harmonic generation measurements were employed to verify the acentric space group symmetry. The crystal structure of Be(CO3) is characterized by the presence of isolated [CO3]2--groups and BeO4-tetrahedra. This is a new structure type and such a topology has not been observed in carbonates before. Be(CO3) can be recovered to ambient conditions and is not undergoing a phase transition during decompression.

4.
Angew Chem Int Ed Engl ; 63(40): e202409593, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38963036

RESUMO

The research for wurtzite-type ternary nitride semiconductors containing earth abundant elements with a stoichiometry of 1 : 1 : 2 was focused on metals like Mg or Zn, so far. The vast majority of these Grimm-Sommerfeld analogue compounds crystallize in the ß-NaFeO2 structure, although a second arrangement in space group Pmc21 is predicted to be a viable alternative. Despite extensive theoretical and experimental studies, this structure has so far remained undiscovered. Herein, we report on BeGeN2 in a Pmc21 structure, synthesized from Be3N2 and Ge3N4 using a high-pressure high-temperature approach at 6 GPa and 800 °C. The compound was characterized by powder X-ray diffraction (PXRD), solid state nuclear magnetic resonance (NMR), Raman and energy dispersive X-ray (EDX) spectroscopy, temperature-dependent PXRD, second harmonic generation (SHG) and UV/Vis measurements and in addition also compared to its lighter homologue BeSiN2 in all mentioned analytic techniques. The synthesis and investigation of both the first beryllium germanium nitride and the first ternary wurtzite-type nitride crystallizing in space group Pmc21 open the door to a new field of research on wurtzite-type related structures.

5.
Angew Chem Int Ed Engl ; 63(32): e202405849, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38779989

RESUMO

Nitridophosphates, with their primary structural motif of isolated or condensed PN4 tetrahedra, meet many requirements for high performance materials. Their properties are associated with their structural diversity, which is mainly limited by this specific building block. Herein, we present the alkaline earth metal nitridophosphate oxide Ba3[PN3]O featuring a trigonal planar [PN3]4- anion. Ba3[PN3]O was obtained using a hot isostatic press by medium-pressure high-temperature synthesis (MP/HT) at 200 MPa and 880 °C. The crystal structure was solved and refined from single-crystal X-ray diffraction data in space group R 3 ‾ ${\bar 3}$ c (no. 167) and confirmed by SEM-EDX, magic angle spinning (MAS) NMR, vibrational spectroscopy (Raman, IR) and low-cost crystallographic calculations (LCC). MP/HT synthesis reveals great potential by extending the structural chemistry of P to include trigonal planar [PN3]4- motifs.

6.
Dalton Trans ; 53(14): 6472, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38516919

RESUMO

Correction for '(TeCl)4(TiCl4) with isolated Te4Cl16 and TiCl4 molecules and second-harmonic-generation' by Maxime A. Bonnin et al., Dalton Trans., 2024, 53, 4962-4967, https://doi.org/10.1039/D4DT00284A.

7.
Inorg Chem ; 63(11): 5227-5234, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38451057

RESUMO

We report on the synthesis of two-layered alkali germanates, Na2Ge4O7 and K2Ge4O7. Both compounds were synthesized by using the ammonothermal method at 823 K and 100 MPa. Under these conditions, germanium is partially reduced from the +IV state to +II, forming mixed-valence compounds with the rarely observed [Ge(II)O3]4- unit. The valence state was verified by X-ray photoelectron spectroscopy (XPS) and was accompanied by theoretical calculations alongside vibrational spectroscopy and single-crystal X-ray structure determination. The compounds crystallize in the trigonal space groups (Na2Ge4O7: P3̅c1 and K2Ge4O7: P3̅m1) and feature layers of corner sharing [Ge(II)O3]4- and [Ge(IV)2O7]6- units forming [Ge(II)2Ge(IV)2O7]2- polyanions. These layers are separated by alkali metal ions. The compounds are colorless insulators with band gaps of 4.0-4.2 eV. According to the Robin-Day classification, both compounds can be described as class I materials, where the valences are trapped on specific sites.

8.
Dalton Trans ; 53(11): 4962-4967, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38380981

RESUMO

(TeCl4)4(TiCl4) is obtained by reaction of TeCl4 and TiCl4 at 50 °C with quantitative yield. The compound is composed of isolated, molecular (TeCl4)4 heterocubane-type units as well as isolated, molecular TiCl4 tetrahedra. The (TeCl4)4 heterocubane is arranged like a body-centred cubic cell with TiCl4 tetrahedra occupying 4 of 6 octahedral sites. (TeCl4)4(TiCl4) crystallizes in the space group I4̄ with an unidirectional alignment of the tetrahedral building units. The structure of the compound is obtained from single crystal X-ray diffraction and confirmed by Rietveld refinement of powder diffraction data. Thermogravimetry, optical spectroscopy, infrared and Raman spectroscopy are employed to further characterize the title compound. Second harmonic generation (SHG) is observed with a strong intensity (1.6-times higher than potassium dihydrogen phosphate/KDP). The SHG effect is observed in the visible spectral regime as the band gap, derived from a Tauc plot, is 2.8 eV.

9.
Dalton Trans ; 53(1): 40-44, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38054559

RESUMO

The inorganic pyrocarbonate salt Na2[C2O5] crystallizes in the acentric, monoclinic space group P21 with Z = 2. It contains monovalent alkali metal cations together with isolated pyrocarbonate anions. The [C2O5]2--groups consist of two planar [CO3]2--groups which are slightly tilted with respect to each other around the bridging oxygen atom. Na2[C2O5] was synthesized in a laser-heated diamond anvil cell at 20(2) GPa by heating a mixture of Na2[CO3] + CO2 to ≈800(200) K. Its crystal structure was obtained by single crystal synchrotron X-ray diffraction and confirmed by density functional theory-based calculations in combination with Raman spectroscopy. Second harmonic generation measurements verified the acentric space group symmetry. The crystal structure is characterized by alternating layers of Na+-cations and [C2O5]2--complex anions.

10.
Chem Commun (Camb) ; 59(80): 11951-11954, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37747265

RESUMO

The inorganic pyrocarbonate salt Ba[C2O5] contains twisted pyrocarbonate anions ([C2O5]2-), an atomic arrangement previously not observed in other pyrocarbonates. This unexpected additional structural degree of freedom points towards an enlarged chemical variability in this novel group of compounds. Ba[C2O5] was synthesized in a laser-heated diamond anvil cell at 30(2) GPa by heating a mixture of Ba[CO3] + CO2 to ≈ 1500(200) K. Its crystal structure was solved from single crystal synchrotron X-ray diffraction data and confirmed by density functional theory-based calculations. The two planar [CO3]2--groups of the [C2O5]2--anion are strongly twisted around the bridging oxygen atom. Ba[C2O5] has been observed in the pressure range of 5-30 GPa, where its symmetry is P6/m with Z = 12.

11.
Inorg Chem ; 62(34): 13910-13918, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37579301

RESUMO

We synthesized the inorganic anhydrous aluminum carbonates Al2[C2O5][CO3]2 and Al2[CO3]3 by reacting Al2O3 with CO2 at high pressures and temperatures and characterized them by Raman spectroscopy. Their structures were solved by X-ray diffraction. Al2[CO3]3 forms at around 24-28 GPa, while Al2[C2O5][CO3]2 forms above 38(3) GPa. The distinguishing feature of the new Al2[C2O5][CO3]2-structure type is the presence of pyrocarbonate [C2O5]2--groups, trigonal [CO3]2─groups, and octahedrally coordinated trivalent cations. Al2[CO3]3 has isolated [CO3]2--groups. Both Al-carbonates can be recovered under ambient conditions. Density functional theory calculations predict that CO2 will react with Fe2O3, Ti2O3, Ga2O3, In2O3, and MgSiO3 at high pressures to form compounds which are isostructural to Al2[C2O5][CO3]2. MgSi[C2O5][CO3]2 is predicted to be stable at pressures relative to abundant mantle minerals in the presence of CO2. This structure type allows the incorporation of four elements (Mg, Si, Fe, and Al) abundant in the Earth's mantle in octahedral coordination and provides an alternative phase with novel carbon speciation for carbon storage in the deep Earth.

12.
Dalton Trans ; 51(31): 11737-11746, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35856459

RESUMO

The amidosulphates Mg(NH2SO3)2·4H2O (P21/c), Mg(NH2SO3)2·3H2O (P1̄), Ca(NH2SO3)2·4H2O (C2/c), Ca(NH2SO3)2·H2O (P212121), Sr(NH2SO3)2·4H2O (C2/c), Sr(NH2SO3)2·H2O (P21/c) and Ba(NH2SO3)2 (Pna21) could be obtained as cm-sized crystals from aqueous solutions of the corresponding metal carbonates, hydroxides and amidosulphonic acid, respectively, by careful control of the crystallisation conditions. ß-Sr(NH2SO3)2 (Pc) and α-Sr(NH2SO3)2 (P21) could be obtained by careful thermal dehydration of Sr(NH2SO3)2·H2O. Their crystal structures were determined by single-crystal XRD and revealed a rich structural diversity with a significant tendency to form non-centrosymmetric crystals. The compounds were characterised by powder XRD, FT-IR, Raman and UV/vis spectroscopy and thermogravimetry. Temperature programmed single-crystal XRD, powder XRD and Raman spectroscopy, as well as DFT calculations were employed to aid the interpretation of vibrational and thermal properties. For the first time, SHG measurements were performed on metal amidosulphates, revealing the SHG intensities of ß-Sr(NH2SO3)2 and Ba(NH2SO3)2 that were comparable to quartz and KDP. Thermal decomposition was additionally studied by the preparation of reaction intermediates, serendipitously revealing the formation of S4N4 as the decomposition product. This unprecedented reaction represents the first sulphur nitride synthesis process that neither employs a sulphur halide nor elemental sulphur.

13.
Inorg Chem ; 61(26): 9855-9859, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35730801

RESUMO

We have synthesized Pb[C2O5], an inorganic pyrocarbonate salt, in a laser-heated diamond anvil cell (LH-DAC) at 30 GPa by heating a Pb[CO3] + CO2 mixture to ≈2000(200) K. Inorganic pyrocarbonates contain isolated [C2O5]2- groups without functional groups attached. The [C2O5]2- groups consist of two oxygen-sharing [CO3]3- groups. Pb[C2O5] was characterized by synchrotron-based single-crystal structure refinement, Raman spectroscopy, and density functional theory calculations. Pb[C2O5] is isostructural to Sr[C2O5] and crystallizes in the monoclinic space group P21/c with Z = 4. The synthesis of Pb[C2O5] demonstrates that, just like in other carbonates, cation substitution is possible and that therefore inorganic pyrocarbonates are a novel family of carbonates, in addition to the established sp2 and sp3 carbonates.

14.
J Am Chem Soc ; 144(7): 2899-2904, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35134291

RESUMO

The synthesis of a novel type of carbonate, namely of the inorganic pyrocarbonate salt Sr[C2O5], which contains isolated [C2O5]2--groups, significantly extends the crystal chemistry of inorganic carbonates beyond the established sp2- and sp3-carbonates. We synthesized Sr[C2O5] in a laser-heated diamond anvil cell by reacting Sr[CO3] with CO2. By single crystal synchrotron diffraction, Raman spectroscopy, and density functional theory (DFT) calculations, we show that it is a pyrocarbonate salt. Sr[C2O5] is the first member of a novel family of inorganic carbonates. We predict, based on DFT calculations, that further inorganic pyrocarbonates can be obtained and that these will be relevant to geoscience and may provide a better understanding of reactions converting CO2 into useful inorganic compounds.

15.
Inorg Chem ; 60(20): 15653-15658, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34614358

RESUMO

GaSeCl5O is a new inorganic molecular compound prepared from SeO2, SeCl4, and GaCl3 at 50 °C in quantitative yield. The structure of the title compound is described by GaCl3(OSeCl2) molecules with a tetrahedrally coordinated Ga atom and a pseudo-tetrahedrally coordinated Se atom (including lone pair of Se(IV)) that are bridged by oxygen. GaSeCl5O crystallizes in the polar chiral space group P61, which is rarely observed for molecular structures. The compound is characterized by X-ray structure analysis based on single crystals and powder samples, thermogravimetry, infrared and Raman spectroscopy as well as by second harmonic generation (SHG) measurements. The experimental data are complemented by density functional theory calculations. GaSeCl5O shows one of the strongest SHG signals known in the visible part of the electromagnetic spectrum (480-700 nm) with an SHG intensity 10 times higher than potassium dihydrogen phosphate (KDP). This is in accordance with the phase matchability and a strong dipole moment (|µ| = 8.3 D for a molecule in the crystal lattice). Such a strong SHG effect is also remarkable since GaSeCl5O-unlike most of the materials with strong SHG intensity-is an inorganic molecular compound.

16.
Inorg Chem ; 60(19): 14504-14508, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34520201

RESUMO

We have synthesized the orthocarbonate Sr3[CO4]O in a laser-heated diamond anvil cell at 20 and 30 GPa by heating to ≈3000 (300) K. Afterward, we recovered the orthocarbonate with [CO4]4- groups at ambient conditions. Single-crystal diffraction shows the presence of [CO4]4- groups, i.e., sp3-hybridized carbon tetrahedrally coordinated by covalently bound oxygen atoms. The [CO4]4- tetrahedra are located in a cage formed by corner-sharing OSr6 octahedra, i.e., octahedra with oxygen as a central ion, forming an antiperovskite-type structure. At high pressures, the octahedra are nearly ideal and slightly rotated. The high-pressure phase is tetragonal (I4/mcm). Upon pressure release, there is a phase transition with a symmetry lowering to an orthorhombic phase (Pnma), where the octahedra tilt and deform slightly.

17.
Angew Chem Int Ed Engl ; 60(40): 21801-21806, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34382328

RESUMO

CrB4 O6 N crystallizes in the non-centrosymmetric space group P63 mc (no. 186) with the lattice parameters a=5.1036(1), c=8.3519(3) Å, and a volume of 188.40(1) Å3 . It was synthesized in a high-pressure/high-temperature experiment at 7 GPa and 1673 K and represents the first high-pressure oxonitridoborate. It is built up of starlike-shaped entities of four BO3 N tetrahedra, connected via one common nitrogen atom that resembles the fourfold-coordinated nitrogen atoms in the homeotypic nitridosilicates MYbSi4 N7 (M=Sr, Ba). Building up a network with channels that contain the Cr3+ ions, CrB4 O6 N contains for the first time a tetrahedral building unit in contrast to trigonal planar B(O/N)3 entities in all other known oxonitridoborates. The structural relations as well as the results of spectroscopic measurements and calculations on the chromium oxonitridoborate are discussed.

18.
Inorg Chem ; 60(8): 5419-5422, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33813824

RESUMO

We have synthesized the orthocarbonate Sr2CO4, in which carbon is tetrahedrally coordinated by four oxygen atoms, at moderately high pressures [20(1) GPa] and high temperatures (≈3500 K) in a diamond anvil cell by reacting a SrCO3 single crystal with SrO powder. We show by synchrotron powder X-ray diffraction, Raman spectroscopy, and density functional thoery calculations that this phase, and hence sp3-hybridized carbon in a CO44- group, can be recovered at ambient conditions. The C-O bond distances are all of similar lengths [≈1.41(1) Å], and the O-C-O angles deviate from the ideal tetrahedral angle by a few degrees only.

19.
J Am Chem Soc ; 143(2): 798-804, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33405904

RESUMO

The crown-ether coordination compounds ZnX2(18-crown-6), EuX2(18-crown-6) (X: Cl, Br, I), MnI2(18-crown-6), Mn3Cl6(18-crown-6)2, Mn3I6(18-crown-6)2, and Mn2I4(18-crown-6) are obtained by ionic-liquid-based synthesis. Whereas MX2(18-crown-6) (M: Zn, Eu) show conventional structural motives, Mn3Cl6(18-crown-6)2, Mn3I6(18-crown-6)2, and Mn2I4(18-crown-6) exhibit unusual single MnX4 tetrahedra coordinated to the crown-ether complex. Surprisingly, some compounds show outstanding photoluminescence. Thus, rare Zn2+-based luminescence is observed and unexpectedly efficient for ZnI2(18-crown-6) with a quantum yield of 54%. Unprecedented quantum yields are also observed for Mn3I6(18-crown-6)2, EuBr2(18-crown-6), and EuI2(18-crown-6) with values of 98, 72, and 82%, respectively, which can be rationalized based on the specific structural features. Most remarkable, however, is Mn2I4(18-crown-6). Its specific structural features with finite sensitizer-activator couples result in an extremely strong emission with an outstanding quantum yield of 100%. Consistent with its structural features, moreover, anisotropic angle-dependent emission under polarized light and nonlinear optical (NLO) effects occur, including second-harmonic generation (SHG). The title compounds and their optical properties are characterized by single-crystal structure analysis, X-ray powder diffraction, chemical analysis, density functional theory (DFT) calculations, and advanced spectroscopic methods.

20.
Angew Chem Int Ed Engl ; 60(3): 1503-1506, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33026134

RESUMO

The first bismuth borosulfate (H3 O)Bi[B(SO4 )2 ]4 is only the second featuring a three-dimensional anion, the first tectosilicate-analogous borosulfate synthesised solvothermally without a precursor (from Bi(NO3 )3 ⋅5 H2 O and B(OH)3 in oleum); moreover, it is the first comprising two differently charged cations and crystallises in a new structure type in space group I 4 ‾ (no. 82) (a=11.857(1), c=8.149(1) Å, 1947 refl., 111 param., wR2=0.037), confirmed by a second harmonic generation (SHG) measurement. The B(SO4 )4 supertetrahedra are connected via all four sulfate tetrahedra resulting in a three-dimensional anion with both H3 O+ and Bi3+ cations in channels. Additionally, the crystal structure of a further bismuth borosulfate, Bi2 [B2 (SO4 )6 ], is elucidated crystallising isotypically to the rare-earth borosulfates R2 [B2 (SO4 )6 ] in space group C2/c (No. 15) (a=13.568(2), b=11.490(2), c=11.106(2) Å, 3127 refl., 155 param., wR2=0.035). Moreover, the optical and thermal properties of both compounds are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...