Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 28(13): 3395-3405.e6, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31553909

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into the human population in 2012 and has caused substantial morbidity and mortality. Potently neutralizing antibodies targeting the receptor-binding domain (RBD) on MERS-CoV spike (S) protein have been characterized, but much less is known about antibodies targeting non-RBD epitopes. Here, we report the structural and functional characterization of G2, a neutralizing antibody targeting the MERS-CoV S1 N-terminal domain (S1-NTD). Structures of G2 alone and in complex with the MERS-CoV S1-NTD define a site of vulnerability comprising two loops, each of which contain a residue mutated in G2-escape variants. Cell-surface binding studies and in vitro competition experiments demonstrate that G2 strongly disrupts the attachment of MERS-CoV S to its receptor, dipeptidyl peptidase-4 (DPP4), with the inhibition requiring the native trimeric S conformation. These results advance our understanding of antibody-mediated neutralization of coronaviruses and should facilitate the development of immunotherapeutics and vaccines against MERS-CoV.


Assuntos
Epitopos/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Humanos
2.
J Virol ; 92(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29514901

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) causes a highly lethal pulmonary infection with ∼35% mortality. The potential for a future pandemic originating from animal reservoirs or health care-associated events is a major public health concern. There are no vaccines or therapeutic agents currently available for MERS-CoV. Using a probe-based single B cell cloning strategy, we have identified and characterized multiple neutralizing monoclonal antibodies (MAbs) specifically binding to the receptor-binding domain (RBD) or S1 (non-RBD) regions from a convalescent MERS-CoV-infected patient and from immunized rhesus macaques. RBD-specific MAbs tended to have greater neutralizing potency than non-RBD S1-specific MAbs. Six RBD-specific and five S1-specific MAbs could be sorted into four RBD and three non-RBD distinct binding patterns, based on competition assays, mapping neutralization escape variants, and structural analysis. We determined cocrystal structures for two MAbs targeting the RBD from different angles and show they can bind the RBD only in the "out" position. We then showed that selected RBD-specific, non-RBD S1-specific, and S2-specific MAbs given prophylactically prevented MERS-CoV replication in lungs and protected mice from lethal challenge. Importantly, combining RBD- and non-RBD MAbs delayed the emergence of escape mutations in a cell-based virus escape assay. These studies identify MAbs targeting different antigenic sites on S that will be useful for defining mechanisms of MERS-CoV neutralization and for developing more effective interventions to prevent or treat MERS-CoV infections.IMPORTANCE MERS-CoV causes a highly lethal respiratory infection for which no vaccines or antiviral therapeutic options are currently available. Based on continuing exposure from established reservoirs in dromedary camels and bats, transmission of MERS-CoV into humans and future outbreaks are expected. Using structurally defined probes for the MERS-CoV spike glycoprotein (S), the target for neutralizing antibodies, single B cells were sorted from a convalescent human and immunized nonhuman primates (NHPs). MAbs produced from paired immunoglobulin gene sequences were mapped to multiple epitopes within and outside the receptor-binding domain (RBD) and protected against lethal MERS infection in a murine model following passive immunization. Importantly, combining MAbs targeting distinct epitopes prevented viral neutralization escape from RBD-directed MAbs. These data suggest that antibody responses to multiple domains on CoV spike protein may improve immunity and will guide future vaccine and therapeutic development efforts.


Assuntos
Anticorpos Neutralizantes/metabolismo , Infecções por Coronavirus/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Anticorpos Antivirais/metabolismo , Cristalografia por Raios X , Humanos , Macaca mulatta , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Glicoproteína da Espícula de Coronavírus/química , Vacinação
3.
Environ Res ; 161: 364-369, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29195185

RESUMO

BACKGROUND: In 1997 the U.S. Environmental Protection Agency set the first annual National Ambient Air Quality Standard (NAAQS) for fine particulate matter (PM2.5). Although the weight of scientific evidence has determined that a causal relationship exists between PM2.5 exposures and cardiovascular effects, few studies have concluded whether NAAQS-related reductions in PM2.5 led to improvements in public health. METHODS: We examined the change in cardiovascular (CV) mortality rate and the association between change in PM2.5 and change in CV-mortality rate before (2000-2004) and after implementation of the 1997 annual PM2.5 NAAQS (2005-2010) among U.S. counties. We further examined how the association varied with respect to two factors related to NAAQS compliance: attainment status and design values (DV). We used difference-in-differences and linear regression models, adjusted for sociodemographic confounders. FINDINGS: Across 619 counties, there were 1.10 (95% CI: 0.37, 1.82) fewer CV-deaths per year per 100,000 people for each 1µg/m3 decrease in PM2.5. Nonattainment counties had a twofold larger reduction in mean annual PM2.5, 2.1µg/m3, compared to attainment counties, 0.97µg/m3. CV-mortality rate decreased by 0.59 (95% CI: -0.54, 1.71) in nonattainment and 1.96 (95% CI: 0.77, 3.15) deaths per 100,000 people for each 1µg/m3 decrease in PM2.5 in attainment counties. When stratifying counties by DV, results were similar: counties with DV greater than 15µg/m3 experienced the greatest decrease in mean annual PM2.5 (2.29µg/m3) but the smallest decrease in CV-mortality rate per unit decrease in PM2.5, 0.73 (95% CI: -0.57, 2.02). INTERPRETATION: We report a significant association between the change in PM2.5 and the change in CV-mortality rate before and after the implementation of NAAQS and note that the health benefits per 1µg/m3 decrease in PM2.5 persist at levels below the current national standard. FUNDING: US EPA intermural research.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Adulto , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Doenças Cardiovasculares/mortalidade , Humanos , Material Particulado , Estados Unidos/epidemiologia , United States Environmental Protection Agency
4.
Proc Natl Acad Sci U S A ; 114(35): E7348-E7357, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28807998

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is a lineage C betacoronavirus that since its emergence in 2012 has caused outbreaks in human populations with case-fatality rates of ∼36%. As in other coronaviruses, the spike (S) glycoprotein of MERS-CoV mediates receptor recognition and membrane fusion and is the primary target of the humoral immune response during infection. Here we use structure-based design to develop a generalizable strategy for retaining coronavirus S proteins in the antigenically optimal prefusion conformation and demonstrate that our engineered immunogen is able to elicit high neutralizing antibody titers against MERS-CoV. We also determined high-resolution structures of the trimeric MERS-CoV S ectodomain in complex with G4, a stem-directed neutralizing antibody. The structures reveal that G4 recognizes a glycosylated loop that is variable among coronaviruses and they define four conformational states of the trimer wherein each receptor-binding domain is either tightly packed at the membrane-distal apex or rotated into a receptor-accessible conformation. Our studies suggest a potential mechanism for fusion initiation through sequential receptor-binding events and provide a foundation for the structure-based design of coronavirus vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Antivirais/imunologia , Coronaviridae/imunologia , Infecções por Coronavirus/virologia , Cristalografia por Raios X/métodos , Humanos , Imunidade Humoral/imunologia , Imunoglobulina G/metabolismo , Camundongos Endogâmicos BALB C , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Ligação Proteica , Conformação Proteica , Receptores Virais/metabolismo , Relação Estrutura-Atividade , Vacinação , Vacinas Virais/imunologia
5.
Nat Commun ; 6: 7712, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26218507

RESUMO

The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) as a cause of severe respiratory disease highlights the need for effective approaches to CoV vaccine development. Efforts focused solely on the receptor-binding domain (RBD) of the viral Spike (S) glycoprotein may not optimize neutralizing antibody (NAb) responses. Here we show that immunogens based on full-length S DNA and S1 subunit protein elicit robust serum-neutralizing activity against several MERS-CoV strains in mice and non-human primates. Serological analysis and isolation of murine monoclonal antibodies revealed that immunization elicits NAbs to RBD and, non-RBD portions of S1 and S2 subunit. Multiple neutralization mechanisms were demonstrated by solving the atomic structure of a NAb-RBD complex, through sequencing of neutralization escape viruses and by constructing MERS-CoV S variants for serological assays. Immunization of rhesus macaques confers protection against MERS-CoV-induced radiographic pneumonia, as assessed using computerized tomography, supporting this strategy as a promising approach for MERS-CoV vaccine development.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Coronavirus/prevenção & controle , DNA Viral/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Monoclonais/imunologia , Feminino , Células HEK293 , Humanos , Imunoglobulina G/imunologia , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos BALB C
6.
mBio ; 5(4): e01340-14, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25096879

RESUMO

Macropinocytosis is exploited by many pathogens for entry into cells. Coronaviruses (CoVs) such as severe acute respiratory syndrome (SARS) CoV and Middle East respiratory syndrome CoV are important human pathogens; however, macropinocytosis during CoV infection has not been investigated. We demonstrate that the CoVs SARS CoV and murine hepatitis virus (MHV) induce macropinocytosis, which occurs late during infection, is continuous, and is not associated with virus entry. MHV-induced macropinocytosis results in vesicle internalization, as well as extended filopodia capable of fusing with distant cells. MHV-induced macropinocytosis requires fusogenic spike protein on the cell surface and is dependent on epidermal growth factor receptor activation. Inhibition of macropinocytosis reduces supernatant viral titers and syncytia but not intracellular virus titers. These results indicate that macropinocytosis likely facilitates CoV infection through enhanced cell-to-cell spreading. Our studies are the first to demonstrate virus use of macropinocytosis for a role other than entry and suggest a much broader potential exploitation of macropinocytosis in virus replication and host interactions. Importance: Coronaviruses (CoVs), including severe acute respiratory syndrome (SARS) CoV and Middle East respiratory syndrome CoV, are critical emerging human pathogens. Macropinocytosis is induced by many pathogens to enter host cells, but other functions for macropinocytosis in virus replication are unknown. In this work, we show that CoVs induce a macropinocytosis late in infection that is continuous, independent from cell entry, and associated with increased virus titers and cell fusion. Murine hepatitis virus macropinocytosis requires a fusogenic virus spike protein and signals through the epidermal growth factor receptor and the classical macropinocytosis pathway. These studies demonstrate CoV induction of macropinocytosis for a purpose other than entry and indicate that viruses likely exploit macropinocytosis at multiple steps in replication and pathogenesis.


Assuntos
Coronavirus/fisiologia , Pinocitose/fisiologia , Animais , Linhagem Celular Tumoral , Camundongos , Pseudópodes/fisiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Replicação Viral/fisiologia
7.
mBio ; 5(2): e00047-14, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24667706

RESUMO

Cross-species transmission of zoonotic coronaviruses (CoVs) can result in pandemic disease outbreaks. Middle East respiratory syndrome CoV (MERS-CoV), identified in 2012, has caused 182 cases to date, with ~43% mortality, and no small animal model has been reported. MERS-CoV and Pipistrellus bat coronavirus (BtCoV) strain HKU5 of Betacoronavirus (ß-CoV) subgroup 2c share >65% identity at the amino acid level in several regions, including nonstructural protein 5 (nsp5) and the nucleocapsid (N) protein, which are significant drug and vaccine targets. BtCoV HKU5 has been described in silico but has not been shown to replicate in culture, thus hampering drug and vaccine studies against subgroup 2c ß-CoVs. We report the synthetic reconstruction and testing of BtCoV HKU5 containing the severe acute respiratory syndrome (SARS)-CoV spike (S) glycoprotein ectodomain (BtCoV HKU5-SE). This virus replicates efficiently in cell culture and in young and aged mice, where the virus targets airway and alveolar epithelial cells. Unlike some subgroup 2b SARS-CoV vaccines that elicit a strong eosinophilia following challenge, we demonstrate that BtCoV HKU5 and MERS-CoV N-expressing Venezuelan equine encephalitis virus replicon particle (VRP) vaccines do not cause extensive eosinophilia following BtCoV HKU5-SE challenge. Passage of BtCoV HKU5-SE in young mice resulted in enhanced virulence, causing 20% weight loss, diffuse alveolar damage, and hyaline membrane formation in aged mice. Passaged virus was characterized by mutations in the nsp13, nsp14, open reading frame 5 (ORF5) and M genes. Finally, we identified an inhibitor active against the nsp5 proteases of subgroup 2c ß-CoVs. Synthetic-genome platforms capable of reconstituting emerging zoonotic viral pathogens or their phylogenetic relatives provide new strategies for identifying broad-based therapeutics, evaluating vaccine outcomes, and studying viral pathogenesis. IMPORTANCE The 2012 outbreak of MERS-CoV raises the specter of another global epidemic, similar to the 2003 SARS-CoV epidemic. MERS-CoV is related to BtCoV HKU5 in target regions that are essential for drug and vaccine testing. Because no small animal model exists to evaluate MERS-CoV pathogenesis or to test vaccines, we constructed a recombinant BtCoV HKU5 that expressed a region of the SARS-CoV spike (S) glycoprotein, thereby allowing the recombinant virus to grow in cell culture and in mice. We show that this recombinant virus targets airway epithelial cells and causes disease in aged mice. We use this platform to (i) identify a broad-spectrum antiviral that can potentially inhibit viruses closely related to MERS-CoV, (ii) demonstrate the absence of increased eosinophilic immune pathology for MERS-CoV N protein-based vaccines, and (iii) mouse adapt this virus to identify viral genetic determinants of cross-species transmission and virulence. This study holds significance as a strategy to control newly emerging viruses.


Assuntos
Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Coronavirus/fisiologia , Modelos Animais de Doenças , Animais , Quirópteros , Coronavirus/isolamento & purificação , Coronavirus/patogenicidade , Portadores de Fármacos , Vírus da Encefalite Equina Venezuelana/genética , Eosinofilia/imunologia , Vetores Genéticos , Camundongos , Camundongos Endogâmicos BALB C , Sistema Respiratório/virologia , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/efeitos adversos , Vacinas Virais/genética , Vacinas Virais/imunologia
8.
Nat Med ; 18(12): 1820-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23142821

RESUMO

Live, attenuated RNA virus vaccines are efficacious but subject to reversion to virulence. Among RNA viruses, replication fidelity is recognized as a key determinant of virulence and escape from antiviral therapy; increased fidelity is attenuating for some viruses. Coronavirus (CoV) replication fidelity is approximately 20-fold greater than that of other RNA viruses and is mediated by a 3'→5' exonuclease (ExoN) activity that probably functions in RNA proofreading. In this study we demonstrate that engineered inactivation of severe acute respiratory syndrome (SARS)-CoV ExoN activity results in a stable mutator phenotype with profoundly decreased fidelity in vivo and attenuation of pathogenesis in young, aged and immunocompromised mice. The ExoN inactivation genotype and mutator phenotype are stable and do not revert to virulence, even after serial passage or long-term persistent infection in vivo. ExoN inactivation has potential for broad applications in the stable attenuation of CoVs and, perhaps, other RNA viruses.


Assuntos
Exorribonucleases/antagonistas & inibidores , Exorribonucleases/metabolismo , Hospedeiro Imunocomprometido/imunologia , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Vacinas Virais/farmacologia , Replicação Viral/fisiologia , Fatores Etários , Animais , Sequência de Bases , Primers do DNA/genética , Desenho de Fármacos , Exorribonucleases/genética , Exorribonucleases/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Plasmídeos/genética , Reação em Cadeia da Polimerase em Tempo Real , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Análise de Sequência de DNA , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/virologia , Estatísticas não Paramétricas
9.
PLoS Pathog ; 7(1): e1001258, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-21253575

RESUMO

Interferon-inducible transmembrane proteins 1, 2, and 3 (IFITM1, 2, and 3) are recently identified viral restriction factors that inhibit infection mediated by the influenza A virus (IAV) hemagglutinin (HA) protein. Here we show that IFITM proteins restricted infection mediated by the entry glycoproteins (GP(1,2)) of Marburg and Ebola filoviruses (MARV, EBOV). Consistent with these observations, interferon-ß specifically restricted filovirus and IAV entry processes. IFITM proteins also inhibited replication of infectious MARV and EBOV. We observed distinct patterns of IFITM-mediated restriction: compared with IAV, the entry processes of MARV and EBOV were less restricted by IFITM3, but more restricted by IFITM1. Moreover, murine Ifitm5 and 6 did not restrict IAV, but efficiently inhibited filovirus entry. We further demonstrate that replication of infectious SARS coronavirus (SARS-CoV) and entry mediated by the SARS-CoV spike (S) protein are restricted by IFITM proteins. The profile of IFITM-mediated restriction of SARS-CoV was more similar to that of filoviruses than to IAV. Trypsin treatment of receptor-associated SARS-CoV pseudovirions, which bypasses their dependence on lysosomal cathepsin L, also bypassed IFITM-mediated restriction. However, IFITM proteins did not reduce cellular cathepsin activity or limit access of virions to acidic intracellular compartments. Our data indicate that IFITM-mediated restriction is localized to a late stage in the endocytic pathway. They further show that IFITM proteins differentially restrict the entry of a broad range of enveloped viruses, and modulate cellular tropism independently of viral receptor expression.


Assuntos
Antígenos de Diferenciação/metabolismo , Filoviridae/patogenicidade , Vírus da Influenza A/patogenicidade , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Viroses/virologia , Internalização do Vírus , Animais , Antígenos de Diferenciação/imunologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Endotélio Vascular , Feminino , Filoviridae/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A/crescimento & desenvolvimento , Camundongos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/crescimento & desenvolvimento , Células Vero , Viroses/imunologia , Viroses/metabolismo , Replicação Viral
10.
PLoS Pathog ; 6(5): e1000896, 2010 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-20463816

RESUMO

Most RNA viruses lack the mechanisms to recognize and correct mutations that arise during genome replication, resulting in quasispecies diversity that is required for pathogenesis and adaptation. However, it is not known how viruses encoding large viral RNA genomes such as the Coronaviridae (26 to 32 kb) balance the requirements for genome stability and quasispecies diversity. Further, the limits of replication infidelity during replication of large RNA genomes and how decreased fidelity impacts virus fitness over time are not known. Our previous work demonstrated that genetic inactivation of the coronavirus exoribonuclease (ExoN) in nonstructural protein 14 (nsp14) of murine hepatitis virus results in a 15-fold decrease in replication fidelity. However, it is not known whether nsp14-ExoN is required for replication fidelity of all coronaviruses, nor the impact of decreased fidelity on genome diversity and fitness during replication and passage. We report here the engineering and recovery of nsp14-ExoN mutant viruses of severe acute respiratory syndrome coronavirus (SARS-CoV) that have stable growth defects and demonstrate a 21-fold increase in mutation frequency during replication in culture. Analysis of complete genome sequences from SARS-ExoN mutant viral clones revealed unique mutation sets in every genome examined from the same round of replication and a total of 100 unique mutations across the genome. Using novel bioinformatic tools and deep sequencing across the full-length genome following 10 population passages in vitro, we demonstrate retention of ExoN mutations and continued increased diversity and mutational load compared to wild-type SARS-CoV. The results define a novel genetic and bioinformatics model for introduction and identification of multi-allelic mutations in replication competent viruses that will be powerful tools for testing the effects of decreased fidelity and increased quasispecies diversity on viral replication, pathogenesis, and evolution.


Assuntos
Exorribonucleases/genética , Genoma Viral , Síndrome Respiratória Aguda Grave/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Proteínas não Estruturais Virais/genética , Sequência de Aminoácidos , Animais , Chlorocebus aethiops , Evolução Molecular , Engenharia Genética , Variação Genética , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/crescimento & desenvolvimento , Células Vero , Replicação Viral/genética
11.
Proc Natl Acad Sci U S A ; 105(50): 19944-9, 2008 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19036930

RESUMO

Defining prospective pathways by which zoonoses evolve and emerge as human pathogens is critical for anticipating and controlling both natural and deliberate pandemics. However, predicting tenable pathways of animal-to-human movement has been hindered by challenges in identifying reservoir species, cultivating zoonotic organisms in culture, and isolating full-length genomes for cloning and genetic studies. The ability to design and recover pathogens reconstituted from synthesized cDNAs has the potential to overcome these obstacles by allowing studies of replication and pathogenesis without identification of reservoir species or cultivation of primary isolates. Here, we report the design, synthesis, and recovery of the largest synthetic replicating life form, a 29.7-kb bat severe acute respiratory syndrome (SARS)-like coronavirus (Bat-SCoV), a likely progenitor to the SARS-CoV epidemic. To test a possible route of emergence from the noncultivable Bat-SCoV to human SARS-CoV, we designed a consensus Bat-SCoV genome and replaced the Bat-SCoV Spike receptor-binding domain (RBD) with the SARS-CoV RBD (Bat-SRBD). Bat-SRBD was infectious in cell culture and in mice and was efficiently neutralized by antibodies specific for both bat and human CoV Spike proteins. Rational design, synthesis, and recovery of hypothetical recombinant viruses can be used to investigate mechanisms of transspecies movement of zoonoses and has great potential to aid in rapid public health responses to known or predicted emerging microbial threats.


Assuntos
Quirópteros/virologia , Glicoproteínas de Membrana/genética , Síndrome Respiratória Aguda Grave/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Proteínas do Envelope Viral/genética , Sequência de Aminoácidos , Animais , Células Cultivadas , Chlorocebus aethiops , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Recombinação Genética , Mucosa Respiratória/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/isolamento & purificação , Glicoproteína da Espícula de Coronavírus , Células Vero , Replicação Viral , Zoonoses/transmissão , Zoonoses/virologia
12.
J Virol ; 82(22): 11283-93, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18799579

RESUMO

Rotavirus nonstructural protein NSP3 interacts specifically with the 3' end of viral mRNAs, with the eukaryotic translation initiation factor eIF4G, and with RoXaN, a cellular protein of yet-unknown function. By evicting cytoplasmic poly(A) binding protein (PABP-C1) from translation initiation complexes, NSP3 shuts off the translation of cellular polyadenylated mRNAs. We show here that PABP-C1 evicted from eIF4G by NSP3 accumulates in the nucleus of rotavirus-infected cells. Through modeling of the NSP3-RoXaN complex, we have identified mutations in NSP3 predicted to interrupt its interaction with RoXaN without disturbing the NSP3 interaction with eIF4G. Using these NSP3 mutants and a deletion mutant unable to associate with eIF4G, we show that the nuclear localization of PABP-C1 not only is dependent on the capacity of NSP3 to interact with eIF4G but also requires the interaction of NSP3 with a specific region in RoXaN, the leucine- and aspartic acid-rich (LD) domain. Furthermore, we show that the RoXaN LD domain functions as a nuclear export signal and that RoXaN tethers PABP-C1 with RNA. This work identifies RoXaN as a cellular partner of NSP3 involved in the nucleocytoplasmic localization of PABP-C1.


Assuntos
Fator de Iniciação Eucariótico 4G/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Mapeamento de Interação de Proteínas , Proteínas de Ligação a RNA/metabolismo , Rotavirus/fisiologia , Proteínas não Estruturais Virais/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Haplorrinos , Humanos , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Deleção de Sequência
13.
Autophagy ; 3(6): 581-5, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17700057

RESUMO

Macroautophagy (herein autophagy) is a cellular process, requiring ATG5, by which cells deliver double membrane-bound packets containing cytoplasm or cytoplasmic organelles to the lysosome. This process has been reported in some cases to be antiviral, while in other cases it has been reported to be required for efficient viral replication or release. A role for autophagy in RNA virus replication has been an attractive hypothesis because of the association of RNA virus replication with complex membrane rearrangements in the cytoplasm that can generate opposed double membranes. In this study we demonstrate that ATG5 is not required for murine hepatitis virus (MHV) replication n either bone marrow derived macrophages (BMMphi) lacking ATG5 by virtue of Crerecombinase ediated gene deletion or primary low passage murine ATG5(-/-) embryonic ibroblasts (pMEFs). We conclude that neither ATG5 nor an intact autophagic pathway re required for MHV replication or release.


Assuntos
Autofagia , Coronavirus/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Vírus da Hepatite Murina/metabolismo , Replicação Viral , Animais , Proteína 5 Relacionada à Autofagia , Células da Medula Óssea/citologia , Células Cultivadas , Coronavirus/genética , Infecções por Coronavirus/metabolismo , Embrião de Mamíferos/citologia , Fibroblastos/fisiologia , Fibroblastos/virologia , Deleção de Genes , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Vírus da Hepatite Murina/genética
14.
J Virol ; 78(8): 3851-62, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15047801

RESUMO

Rotavirus mRNAs are capped but not polyadenylated, and viral proteins are translated by the cellular translation machinery. This is accomplished through the action of the viral nonstructural protein NSP3, which specifically binds the 3' consensus sequence of viral mRNAs and interacts with the eukaryotic translation initiation factor eIF4G I. To further our understanding of the role of NSP3 in rotavirus replication, we looked for other cellular proteins capable of interacting with this viral protein. Using the yeast two-hybrid assay, we identified a novel cellular protein-binding partner for rotavirus NSP3. This 110-kDa cellular protein, named RoXaN (rotavirus X protein associated with NSP3), contains a minimum of three regions predicted to be involved in protein-protein or nucleic acid-protein interactions. A tetratricopeptide repeat region, a protein-protein interaction domain most often found in multiprotein complexes, is present in the amino-terminal region. In the carboxy terminus, at least five zinc finger motifs are observed, further suggesting the capacity of RoXaN to bind other proteins or nucleic acids. Between these two regions exists a paxillin leucine-aspartate repeat (LD) motif which is involved in protein-protein interactions. RoXaN is capable of interacting with NSP3 in vivo and during rotavirus infection. Domains of interaction were mapped and correspond to the dimerization domain of NSP3 (amino acids 163 to 237) and the LD domain of RoXaN (amino acids 244 to 341). The interaction between NSP3 and RoXaN does not impair the interaction between NSP3 and eIF4G I, and a ternary complex made of NSP3, RoXaN, and eIF4G I can be detected in rotavirus-infected cells, implicating RoXaN in translation regulation.


Assuntos
Fragmentos de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Rotavirus/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência de Bases , Células COS , Linhagem Celular , DNA Complementar/genética , Fator de Iniciação Eucariótico 4G , Evolução Molecular , Expressão Gênica , Humanos , Substâncias Macromoleculares , Complexos Multiproteicos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Rotavirus/genética , Rotavirus/patogenicidade , Infecções por Rotavirus/genética , Infecções por Rotavirus/metabolismo , Infecções por Rotavirus/virologia , Técnicas do Sistema de Duplo-Híbrido , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas Virais/química , Proteínas Virais/genética , Dedos de Zinco
15.
J Virol ; 77(10): 5948-63, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12719587

RESUMO

Reovirus replication occurs in the cytoplasm of infected cells and culminates in the formation of crystalline arrays of progeny virions within viral inclusions. Two viral nonstructural proteins, sigma NS and micro NS, and structural protein sigma 3 form protein-RNA complexes early in reovirus infection. To better understand the minimal requirements of viral inclusion formation, we expressed sigma NS, mu NS, and sigma 3 alone and in combination in the absence of viral infection. In contrast to its concentration in inclusion structures during reovirus replication, sigma NS expressed in cells in the absence of infection is distributed diffusely throughout the cytoplasm and does not form structures that resemble viral inclusions. Expressed sigma NS is functional as it complements the defect in temperature-sensitive, sigma NS-mutant virus tsE320. In both transfected and infected cells, mu NS is found in punctate cytoplasmic structures and sigma 3 is distributed diffusely in the cytoplasm and the nucleus. The subcellular localization of mu NS and sigma 3 is not altered when the proteins are expressed together or with sigma NS. However, when expressed with micro NS, sigma NS colocalizes with mu NS to punctate structures similar in morphology to inclusion structures observed early in viral replication. During reovirus infection, both sigma NS and mu NS are detectable 4 h after adsorption and colocalize to punctate structures throughout the viral life cycle. In concordance with these results, sigma NS interacts with mu NS in a yeast two-hybrid assay and by coimmunoprecipitation analysis. These data suggest that sigma NS and mu NS are the minimal viral components required to form inclusions, which then recruit other reovirus proteins and RNA to initiate viral genome replication.


Assuntos
Corpos de Inclusão Viral/metabolismo , Reoviridae/metabolismo , Reoviridae/patogenicidade , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Células HeLa , Humanos , Células L , Camundongos , Testes de Precipitina , Reoviridae/genética , Frações Subcelulares/metabolismo , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Proteínas não Estruturais Virais/genética , Proteínas Virais/genética , Proteínas Virais Reguladoras e Acessórias , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...