Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 25(1): 24, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238840

RESUMO

BACKGROUND: Modeling of gene regulatory networks (GRNs) is limited due to a lack of direct measurements of genome-wide transcription factor activity (TFA) making it difficult to separate covariance and regulatory interactions. Inference of regulatory interactions and TFA requires aggregation of complementary evidence. Estimating TFA explicitly is problematic as it disconnects GRN inference and TFA estimation and is unable to account for, for example, contextual transcription factor-transcription factor interactions, and other higher order features. Deep-learning offers a potential solution, as it can model complex interactions and higher-order latent features, although does not provide interpretable models and latent features. RESULTS: We propose a novel autoencoder-based framework, StrUcture Primed Inference of Regulation using latent Factor ACTivity (SupirFactor) for modeling, and a metric, explained relative variance (ERV), for interpretation of GRNs. We evaluate SupirFactor with ERV in a wide set of contexts. Compared to current state-of-the-art GRN inference methods, SupirFactor performs favorably. We evaluate latent feature activity as an estimate of TFA and biological function in S. cerevisiae as well as in peripheral blood mononuclear cells (PBMC). CONCLUSION: Here we present a framework for structure-primed inference and interpretation of GRNs, SupirFactor, demonstrating interpretability using ERV in multiple biological and experimental settings. SupirFactor enables TFA estimation and pathway analysis using latent factor activity, demonstrated here on two large-scale single-cell datasets, modeling S. cerevisiae and PBMC. We find that the SupirFactor model facilitates biological analysis acquiring novel functional and regulatory insight.


Assuntos
Redes Reguladoras de Genes , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Algoritmos , Leucócitos Mononucleares , Fatores de Transcrição/genética
2.
bioRxiv ; 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37790443

RESUMO

Cells respond to environmental and developmental stimuli by remodeling their transcriptomes through regulation of both mRNA transcription and mRNA decay. A central goal of biology is identifying the global set of regulatory relationships between factors that control mRNA production and degradation and their target transcripts and construct a predictive model of gene expression. Regulatory relationships are typically identified using transcriptome measurements and causal inference algorithms. RNA kinetic parameters are determined experimentally by employing run-on or metabolic labeling (e.g. 4-thiouracil) methods that allow transcription and decay rates to be separately measured. Here, we develop a deep learning model, trained with single-cell RNA-seq data, that both infers causal regulatory relationships and estimates RNA kinetic parameters. The resulting in silico model predicts future gene expression states and can be perturbed to simulate the effect of transcription factor changes. We acquired model training data by sequencing the transcriptomes of 175,000 individual Saccharomyces cerevisiae cells that were subject to an external perturbation and continuously sampled over a one hour period. The rate of change for each transcript was calculated on a per-cell basis to estimate RNA velocity. We then trained a deep learning model with transcriptome and RNA velocity data to calculate time-dependent estimates of mRNA production and decay rates. By separating RNA velocity into transcription and decay rates, we show that rapamycin treatment causes existing ribosomal protein transcripts to be rapidly destabilized, while production of new transcripts gradually slows over the course of an hour. The neural network framework we present is designed to explicitly model causal regulatory relationships between transcription factors and their genes, and shows superior performance to existing models on the basis of recovery of known regulatory relationships. We validated the predictive power of the model by perturbing transcription factors in silico and comparing transcriptome-wide effects with experimental data. Our study represents the first step in constructing a complete, predictive, biophysical model of gene expression regulation.

3.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778259

RESUMO

The modeling of gene regulatory networks (GRNs) is limited due to a lack of direct measurements of regulatory features in genome-wide screens. Most GRN inference methods are therefore forced to model relationships between regulatory genes and their targets with expression as a proxy for the upstream independent features, complicating validation and predictions produced by modeling frameworks. Separating covariance and regulatory influence requires aggregation of independent and complementary sets of evidence, such as transcription factor (TF) binding and target gene expression. However, the complete regulatory state of the system, e.g. TF activity (TFA) is unknown due to a lack of experimental feasibility, making regulatory relations difficult to infer. Some methods attempt to account for this by modeling TFA as a latent feature, but these models often use linear frameworks that are unable to account for non-linearities such as saturation, TF-TF interactions, and other higher order features. Deep learning frameworks may offer a solution, as they are capable of modeling complex interactions and capturing higher-order latent features. However, these methods often discard central concepts in biological systems modeling, such as sparsity and latent feature interpretability, in favor of increased model complexity. We propose a novel deep learning autoencoder-based framework, StrUcture Primed Inference of Regulation using latent Factor ACTivity (SupirFactor), that scales to single cell genomic data and maintains interpretability to perform GRN inference and estimate TFA as a latent feature. We demonstrate that SupirFactor outperforms current leading GRN inference methods, predicts biologically relevant TFA and elucidates functional regulatory pathways through aggregation of TFs.

4.
Entropy (Basel) ; 23(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375068

RESUMO

Integrated information theory (IIT) provides a mathematical framework to characterize the cause-effect structure of a physical system and its amount of integrated information (Φ). An accompanying Python software package ("PyPhi") was recently introduced to implement this framework for the causal analysis of discrete dynamical systems of binary elements. Here, we present an update to PyPhi that extends its applicability to systems constituted of discrete, but multi-valued elements. This allows us to analyze and compare general causal properties of random networks made up of binary, ternary, quaternary, and mixed nodes. Moreover, we apply the developed tools for causal analysis to a simple non-binary regulatory network model (p53-Mdm2) and discuss commonly used binarization methods in light of their capacity to preserve the causal structure of the original system with multi-valued elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...