Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798369

RESUMO

Sensory deprivation reshapes developing neural circuits, and sensory feedback adjusts the strength of reflexive behaviors throughout life. Sensory development might therefore limit the rate with which behaviors mature, but the complexity of most sensorimotor circuits preclude identifying this fundamental constraint. Here we compared the functional development of components of the vertebrate vestibulo-ocular reflex circuit that stabilizes gaze. We found that vestibular interneuron responses to body tilt sensation developed well before behavioral performance peaked, even without motor neuron-derived feedback. Motor neuron responses developed similarly. Instead, the ontogeny of behavior matched the rate of neuromuscular junction development. When sensation was delayed until after the neuromuscular junction developed, behavioral performance was immediately strong. The matching timecourse and ability to determine behavior establish the development of the neuromuscular junction, and not sensory-derived information, as the rate-limiting process for an ancient and evolutionarilyconserved neural circuit.

2.
Elife ; 122023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37772792

RESUMO

The Reissner fiber (RF) is an acellular thread positioned in the midline of the central canal that aggregates thanks to the beating of numerous cilia from ependymal radial glial cells (ERGs) generating flow in the central canal of the spinal cord. RF together with cerebrospinal fluid (CSF)-contacting neurons (CSF-cNs) form an axial sensory system detecting curvature. How RF, CSF-cNs and the multitude of motile cilia from ERGs interact in vivo appears critical for maintenance of RF and sensory functions of CSF-cNs to keep a straight body axis, but is not well-understood. Using in vivo imaging in larval zebrafish, we show that RF is under tension and resonates dorsoventrally. Focal RF ablations trigger retraction and relaxation of the fiber's cut ends, with larger retraction speeds for rostral ablations. We built a mechanical model that estimates RF stress diffusion coefficient D at 5 mm2/s and reveals that tension builds up rostrally along the fiber. After RF ablation, spontaneous CSF-cN activity decreased and ciliary motility changed, suggesting physical interactions between RF and cilia projecting into the central canal. We observed that motile cilia were caudally-tilted and frequently interacted with RF. We propose that the numerous ependymal motile monocilia contribute to RF's heterogenous tension via weak interactions. Our work demonstrates that under tension, the Reissner fiber dynamically interacts with motile cilia generating CSF flow and spinal sensory neurons.


Assuntos
Ventrículos Cerebrais , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Ventrículos Cerebrais/fisiologia , Neurônios/fisiologia , Medula Espinal/fisiologia , Epêndima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA