Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 7(6): 1795-1806, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38898940

RESUMO

Host defense peptides (HDPs), also named antimicrobial peptides (AMPs), are increasingly being recognized for serving multiple functions in protecting the host from infection and disease. Previous studies have shown that various HDPs can also neutralize lipopolysaccharide (LPS, endotoxin), as well as lipoteichoic acid (LTA), inducing macrophage activation. However, antimicrobial activity is usually accompanied by systemic toxicity which makes it difficult to use HDPs as antiendotoxin agents. Here we report that key parameters can uncouple these two functions yielding nontoxic peptides with potent LPS and LTA neutralization activities in vitro and in animal models. The data reveal that peptide length, the number, and the placement of positive charges are important parameters involved in LPS neutralization. Crucially, the peptide exhibited a separation between its membrane-disrupting and antimicrobial properties, effectively decoupling them from its ability to neutralize LPS. This essential distinction prevented systemic toxicity and led to the peptide's complete rescue of mice suffering from severe septic shock in two distinct models. Strong binding to LPS, changes in structure, and oligomerization state upon LPS binding were important factors that determined the activity of the peptides. In the face of the increasing threat of septic shock worldwide, it is crucial to grasp how we can neutralize harmful substances like LPS. This knowledge is vital for creating nontoxic treatments for sepsis.

2.
ACS Omega ; 8(20): 17856-17868, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37251186

RESUMO

Antibiotic-resistant bacterial infections have increased the prevalence of sepsis and septic shock mortality worldwide and have become a global concern. Antimicrobial peptides (AMPs) show remarkable properties for developing new antimicrobial agents and host response modulatory therapies. A new series of AMPs derived from pexiganan (MSI-78) were synthesized. The positively charged amino acids were segregated at their N- and C-termini, and the rest of the amino acids created a hydrophobic core surrounded by positive charges and were modified to simulate the lipopolysaccharide (LPS). The peptides were investigated for their antimicrobial activity and LPS-induced cytokine release inhibition profile. Various biochemical and biophysical methods were used, including attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, microscale thermophoresis (MST), and electron microscopy. Two new AMPs, MSI-Seg-F2F and MSI-N7K, preserved their neutralizing endotoxin activity while reducing toxicity and hemolytic activity. Combining all of these properties makes the designed peptides potential candidates to eradicate bacterial infection and detoxify LPS, which might be useful for sepsis treatment.

3.
J Med Chem ; 65(13): 9050-9062, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35759644

RESUMO

Lung infection is the leading cause of morbidity and mortality in cystic fibrosis (CF) patients and is mainly dominated by Pseudomonas aeruginosa. Treatment of CF-associated lung infections is problematic because the drugs are vulnerable to multidrug-resistant pathogens, many of which are major biofilm producers like P. aeruginosa. Antimicrobial peptides (AMPs) are essential components in all life forms and exhibit antimicrobial activity. Here we investigated a series of AMPs (d,l-K6L9), each composed of six lysines and nine leucines but differing in their sequence composed of l- and d-amino acids. The d,l-K6L9 peptides showed antimicrobial and antibiofilm activities against P. aeruginosa from CF patients. Furthermore, the data revealed that the d,l-K6L9 peptides are stable and resistant to degradation by CF sputum proteases and maintain their activity in a CF sputum environment. Additionally, the d,l-K6L9 peptides do not induce bacterial resistance. Overall, these findings should assist in the future development of alternative treatments against resistant bacterial biofilms.


Assuntos
Anti-Infecciosos , Fibrose Cística , Infecções por Pseudomonas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Peptídeos Antimicrobianos , Biofilmes , Fibrose Cística/tratamento farmacológico , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa
4.
ACS Infect Dis ; 7(6): 1702-1712, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34043312

RESUMO

Antimicrobial peptides (AMPs), which can be modified to kill a broad spectrum of microoganisms or a specific microorganism, are considered as promising alternatives to combat the rapidly widespread, resistant bacterial infections. However, there are still several obstacles to overcome. These include toxicity, stability, and the ability to interfere with the immune response and bacterial resistance. To overcome these challenges, we herein replaced the regular peptide bonds with isopeptide bonds to produce new AMPs based on the well-known synthetic peptides Amp1L and MSI-78 (pexiganan). Two new peptides Amp1EP and MSIEP were generated while retaining properties such as size, sequence, charge, and molecular weight. These new peptides have reduced toxicity toward murine macrophage (RAW 264.7) cells, human monocytic (THP-1) cells, and human red blood cells (hRBCs) and enhanced the stability toward proteolytic degradation. Importantly, the new peptides do not repress the pro-inflammatory cytokine and hence should not modulate the immune response. Structurally, the new peptides, Amp1EP and MSIEP, have a structure of random coils in contrast to the helical structures of the parental peptides as revealed by circular dichroism (CD) analysis. Their mode of action, assessed by flow cytometry, includes permeabilization of the bacterial membrane. Overall, we present here a new approach to modulate AMPs to develop antimicrobial peptides for future therapeutic purposes.


Assuntos
Bactérias , Animais , Dicroísmo Circular , Humanos , Camundongos , Proteínas Citotóxicas Formadoras de Poros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...