Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Struct Biol ; 215(4): 108029, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37741561

RESUMO

The current challenges of structural biophysics include determining the structure of large self-assembled complexes, resolving the structure of ensembles of complex structures and their mass fraction, and unraveling the dynamic pathways and mechanisms leading to the formation of complex structures from their subunits. Modern synchrotron solution X-ray scattering data enable simultaneous high-spatial and high-temporal structural data required to address the current challenges of structural biophysics. These data are complementary to crystallography, NMR, and cryo-TEM data. However, the analysis of solution scattering data is challenging; hence many different analysis tools, listed in the SAS Portal (http://smallangle.org/), were developed. In this review, we start by briefly summarizing classical X-ray scattering analyses providing insight into fundamental structural and interaction parameters. We then describe recent developments, integrating simulations, theory, and advanced X-ray scattering modeling, providing unique insights into the structure, energetics, and dynamics of self-assembled complexes. The structural information is essential for understanding the underlying physical chemistry principles leading to self-assembled supramolecular architectures and computational structural refinement.


Assuntos
Imageamento por Ressonância Magnética , Difração de Raios X , Raios X , Espalhamento a Baixo Ângulo
2.
Philos Trans A Math Phys Eng Sci ; 379(2194): 20200092, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33583263

RESUMO

Quantifying uncertainty in weather forecasts is critical, especially for predicting extreme weather events. This is typically accomplished with ensemble prediction systems, which consist of many perturbed numerical weather simulations, or trajectories, run in parallel. These systems are associated with a high computational cost and often involve statistical post-processing steps to inexpensively improve their raw prediction qualities. We propose a mixed model that uses only a subset of the original weather trajectories combined with a post-processing step using deep neural networks. These enable the model to account for non-linear relationships that are not captured by current numerical models or post-processing methods. Applied to the global data, our mixed models achieve a relative improvement in ensemble forecast skill (CRPS) of over 14%. Furthermore, we demonstrate that the improvement is larger for extreme weather events on select case studies. We also show that our post-processing can use fewer trajectories to achieve comparable results to the full ensemble. By using fewer trajectories, the computational costs of an ensemble prediction system can be reduced, allowing it to run at higher resolution and produce more accurate forecasts. This article is part of the theme issue 'Machine learning for weather and climate modelling'.

3.
J Appl Crystallogr ; 52(Pt 1): 219-242, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31057345

RESUMO

This paper presents the computer program D+ (https://scholars.huji.ac.il/uriraviv/book/d-0), where the reciprocal-grid (RG) algorithm is implemented. D+ efficiently computes, at high-resolution, the X-ray scattering curves from complex structures that are isotropically distributed in random orientations in solution. Structures are defined in hierarchical trees in which subunits can be represented by geometric or atomic models. Repeating subunits can be docked into their assembly symmetries, describing their locations and orientations in space. The scattering amplitude of the entire structure can be calculated by computing the amplitudes of the basic subunits on 3D reciprocal-space grids, moving up in the hierarchy, calculating the RGs of the larger structures, and repeating this process for all the leaves and nodes of the tree. For very large structures (containing over 100 protein subunits), a hybrid method can be used to avoid numerical artifacts. In the hybrid method, only grids of smaller subunits are summed and used as subunits in a direct computation of the scattering amplitude. D+ can accurately analyze both small- and wide-angle solution X-ray scattering data. This article describes how D+ applies the RG algorithm, accounts for rotations and translations of subunits, processes atomic models, accounts for the contribution of the solvent as well as the solvation layer of complex structures in a scalable manner, writes and accesses RGs, interpolates between grid points, computes numerical integrals, enables the use of scripts to define complicated structures, applies fitting algorithms, accounts for several coexisting uncorrelated populations, and accelerates computations using GPUs. D+ may also account for different X-ray energies to analyze anomalous solution X-ray scattering data. An accessory tool that can identify repeating subunits in a Protein Data Bank file of a complex structure is provided. The tool can compute the orientation and translation of repeating subunits needed for exploiting the advantages of the RG algorithm in D+. A Python wrapper (https://scholars.huji.ac.il/uriraviv/book/python-api) is also available, enabling more advanced computations and integration of D+ with other computational tools. Finally, a large number of tests are presented. The results of D+ are compared with those of other programs when possible, and the use of D+ to analyze solution scattering data from dynamic microtubule structures with different protofilament number is demonstrated. D+ and its source code are freely available for academic users and developers (https://bitbucket.org/uriraviv/public-dplus/src/master/).

4.
J Chem Inf Model ; 56(8): 1518-27, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27410762

RESUMO

In many biochemical processes large biomolecular assemblies play important roles. X-ray scattering is a label-free bulk method that can probe the structure of large self-assembled complexes in solution. As we demonstrate in this paper, solution X-ray scattering can measure complex supramolecular assemblies at high sensitivity and resolution. At high resolution, however, data analysis of larger complexes is computationally demanding. We present an efficient method to compute the scattering curves from complex structures over a wide range of scattering angles. In our computational method, structures are defined as hierarchical trees in which repeating subunits are docked into their assembly symmetries, describing the manner subunits repeat in the structure (in other words, the locations and orientations of the repeating subunits). The amplitude of the assembly is calculated by computing the amplitudes of the basic subunits on 3D reciprocal-space grids, moving up in the hierarchy, calculating the grids of larger structures, and repeating this process for all the leaves and nodes of the tree. For very large structures, we developed a hybrid method that sums grids of smaller subunits in order to avoid numerical artifacts. We developed protocols for obtaining high-resolution solution X-ray scattering data from taxol-free microtubules at a wide range of scattering angles. We then validated our method by adequately modeling these high-resolution data. The higher speed and accuracy of our method, over existing methods, is demonstrated for smaller structures: short microtubule and tobacco mosaic virus. Our algorithm may be integrated into various structure prediction computational tools, simulations, and theoretical models, and provide means for testing their predicted structural model, by calculating the expected X-ray scattering curve and comparing with experimental data.


Assuntos
Algoritmos , Difração de Raios X/métodos , Microtúbulos/química , Modelos Moleculares , Conformação Molecular , Soluções , Vírus do Mosaico do Tabaco/química
5.
Langmuir ; 26(16): 13110-29, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20695550

RESUMO

In this paper, the analysis of several involved models, relevant for evaluating solution X-ray scattering form factors of supramolecular self-assembled structures, is presented. Different geometrical models are discussed, and the scattering form factors of several layers of those shapes are evaluated. The thickness and the electron density of each layer are parameters in those models. The models include Gaussian electron density profiles and/or uniform electron density profiles at each layer. Various forms of cuboid, layered, spherical, cylindrical, and helical structures are carefully treated. The orientation-averaged scattering intensities of those form factors are calculated. Similar classes of form factors are examined and compared, and their fit to scattering data of lipid bilayers, capsids of the Simian virus 40 virus-like particle and microtubule is discussed. A more detailed model of discrete helices composed of uniform spheres was derived and compared to solution X-ray scattering data of microtubules. Our analyses show that when high-resolution data are available the more detailed models with Gaussian electron density profiles or helical structures composed of spheres should be used to better capture all the elements in the scattering curves. The models presented in this paper may also be applied, with minor corrections, for the analysis of solution neutron scattering data.


Assuntos
Espalhamento de Radiação , Raios X , Microesferas , Microtúbulos/química , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...