Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(12): 7731-7737, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36909742

RESUMO

Many properties of materials, including their dissolution kinetics, hardness, and optical appearance, depend on their structure. Unfortunately, it is often difficult to control the structure of low molecular weight organic compounds that have a high propensity to crystallize if they are formulated from solutions wherein they have a high mobility. This limitation can be overcome by formulating these compounds within small airborne drops that rapidly dry, thereby limiting the time molecules have to arrange into the thermodynamically most stable phase. Such drops can be formed with a surface acoustic wave (SAW)-based spray-drier. In this paper, we demonstrate that the structure of a model low molecular weight compound relevant to applications in pharmacology and food, succinic acid, can be readily controlled with the supersaturation rate. Succinic acid particles preserve the metastable structure over at least 3 months if the initial succinic acid concentration is below 2% of its saturation concentration such that the supersaturation rate is high. We demonstrate that also the stability of the metastable phases against their transformation into the most stable phase increases with decreasing initial solute concentration and hence with increasing supersaturation rate of the spray-dried solution. These insights open up new opportunities to control the crystal structure and therefore properties of low molecular weight compounds that have a high propensity to crystallize.

2.
ACS Appl Mater Interfaces ; 14(36): 41499-41507, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36041180

RESUMO

We report the development of novel mineralized protein microcapsules to address critical challenges in the environmental impact and performance of consumer, pharmaceutical, agrochemical, cosmetic, and paint products. We designed environment-friendly capsules composed of proteins and biominerals as an alternative to solid microplastic particles or core-shell capsules made of nonbiodegradable synthetic polymeric resins. We synthesized mineralized capsule surface morphologies to mimic the features of natural pollens, which dramatically improved the deposition of high value-added fragrance chemicals on target substrates in realistic application conditions. A mechanistic model accurately captures the observed enhanced deposition behavior and shows how surface features generate an adhesive torque that resists shear detachment. Mineralized protein capsule performance is shown to depend both on material selection that determines van der Waals attraction and on capsule-substrate energy landscapes as parameterized by a geometric taxonomy for surface morphologies. These findings have broad implications for engineering multifunctional environmentally friendly delivery systems.


Assuntos
Plásticos , Polímeros , Cápsulas
3.
Chemistry ; 27(53): 13457-13467, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34270124

RESUMO

Despite their intrinsic hydrolysable character, imine bonds can become remarkably stable in water when self-assembled in amphiphilic micellar structures. In this work, we systematically studied some of these structures and the influence of various parameters that can be used to take control of their hydrolysis, including pH, concentration, the position of the imine function in the amphiphilic structure, relative lengths of the linked hydrophilic and hydrophobic moieties. Thermodynamic and kinetic data led us to the rational design of stable imines in water, partly based on the location of the imine function within the hydrophobic part of the amphiphile and on a predictable quantitative term that we define as the total hydrophilic-lipophilic balance (HLB). In addition, we show that such stable systems are also stimuli-responsive and therefore, of potential interest in trapping and releasing micellar components on demand.


Assuntos
Iminas , Micelas , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Água
4.
Chemistry ; 27(53): 13468-13476, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34270131

RESUMO

Amphiphilic imines prepared by condensation of a hydrophobic fragrance aldehyde with a hydrophilic amine derived from a poly(propylene oxide) and poly(ethylene oxide) diblock copolymer were investigated as cleavable surfactant profragrances in applications of functional perfumery. In water, the cleavable surfactants assemble into micelles that allow solubilization of perfume molecules that are not covalently attached to the surfactant. Dynamic headspace analysis on a glass surface showed that solubilized perfume molecules evaporated in a similar manner in the presence of the cleavable surfactant as compared with a non-cleavable reference surfactant. Under application conditions, the cleavable surfactant imine hydrolysed to release the covalently linked fragrance aldehyde. The profragrances were stable during storage in aqueous media, and upon dilution showed a blooming effect for the hydrolytical fragrance release and a more balanced performance of a solubilized perfume by retaining the more volatile fragrances and boosting the evaporation of the less volatile fragrances.


Assuntos
Perfumes , Tensoativos , Interações Hidrofóbicas e Hidrofílicas , Micelas , Odorantes
5.
ACS Appl Mater Interfaces ; 12(12): 14518-14530, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32125138

RESUMO

Total internal reflection microscopy (TIRM) is used to directly, sensitively, and simultaneously measure colloidal interactions, dynamics, and deposition for a broad range of polymer-surfactant compositions. A deposition state diagram containing comprehensive information about particle interactions, trajectories, and deposition behavior is obtained for polymer-surfactant compositions covering four decades in both polymer and surfactant concentrations. Bulk polymer-surfactant phase behavior and surface properties are characterized to provide additional information to interpret mechanisms. Materials investigated include cationic acrylamide-acrylamidopropyltrimonium copolymer (AAC), sodium lauryl ether sulfate (SLES) surfactant, silica colloids, and glass microscope slides. Measured colloid-substrate interaction potentials and deposition behavior show nonmonotonic trends vs polymer-surfactant composition and appear to be synergistic in the sense that they are not easily explained as the superposition of single-component-mediated interactions. Broad findings show that at some compositions polymer-surfactant complexes mediate bridging and depletion attractions that promote colloidal deposition, whereas other compositions produce electrosteric repulsion that deters colloidal deposition. These findings illustrate mechanisms underlying colloid-surface interactions in polymer-surfactant mixtures, which are important to controlling selective colloidal deposition in multicomponent formulation applications.

6.
J Colloid Interface Sci ; 537: 682-693, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30497058

RESUMO

HYPOTHESIS: The formation of transient networks of giant micelles leads to a viscosity peak when salt is added to aqueous solutions of charged surfactants. It is the consequence of an increase of the packing parameter due to charge screening of the surfactant headgroups, leading to a continuous transformation of the aggregates from spherical to wormlike micelles, and finally to branched networks. It should therefore be possible to predict the macroscopic viscosity of entangled giant micelles by modelling the packing parameter at nanoscale. EXPERIMENTS: A thermodynamic model is presented with a minimum of adjustable parameters, where branched networks are considered to be built from three coexisting microphases: cylinders, endcaps, and junctions. We use spontaneous packing parameters, in which the whole molecular length instead of the commonly used hydrocarbon chain length is considered. Standard reference chemical potentials and subsequently the occurrence of each microphase can be explicitly derived at specific electrolyte concentrations. Effective micellar length of giant micelles can be obtained from the microphase composition and is subsequently used to calculate the viscosity. FINDINGS: The model successfully predicts position and intensity of the viscosity maximum observed in experimental salt curves of sodium laureth sulfate (SLES). The robustness of the model was further investigated for various types of added salts or fragrance oils that affect differently spontaneous packing parameters or interfacial bending energy. An excellent agreement of the simulated salt curves with experimental data was achieved.

7.
ACS Appl Mater Interfaces ; 9(28): 24238-24249, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28650615

RESUMO

The deposition of fragrance delivery systems onto human hair from a shampoo formulation is a challenging task, as the primary function of shampoo is to cleanse the hair by removing primarily hydrophobic moieties. In this work, to tackle this challenge, phage-display-identified peptides that can bind to human hair under shampooing conditions are first identified and subsequently used to enhance the deposition of model fragrance delivery systems. These delivery systems are based on either poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) copolymers as a representative for polymeric profragrances or polyurethane/polyurea-type core-shell microcapsules as a model physical fragrance carrier. The incorporation of a hair-binding peptide enhanced the deposition of PHPMA copolymers by a factor of 3.5-5.0 depending on the extent of peptide incorporation, whereas 10 wt % surface functionalization of microcapsules with the peptide led to a 20-fold increase in their deposition. In a final experiment, treatment of the hair samples under realistic application conditions with the peptide-functionalized microcapsules resulted in an increase in fragrance release from the hair surfaces.


Assuntos
Cabelo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Peptídeos , Polímeros
8.
J Coat Technol Res ; 12(4): 793-799, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26568787

RESUMO

Various techniques have been employed to entrap fragrant oils within microcapsules or microparticles in the food, pharmaceutical, and chemical industries for improved stability and delivery. In the present work we describe the use of silk protein microparticles for encapsulating fragrant oils using ambient processing conditions to form an all-natural biocompatible matrix. These microparticles are stabilized via physical crosslinking, requiring no chemical agents, and are prepared with aqueous and ambient processing conditions using polyvinyl alcohol-silk emulsions. The particles were loaded with fragrant oils via direct immersion of the silk particles within an oil bath. The oil-containing microparticles were coated using alternating silk and polyethylene oxide layers to control the release of the oil from the microspheres. Particle morphology and size, oil loading capacity, release rates as well as silk-oil interactions and coating treatments were characterized. Thermal analysis demonstrated that the silk coatings can be tuned to alter both retention and release profiles of the encapsulated fragrance. These oil containing particles demonstrate the ability to adsorb and controllably release oils, suggesting a range of potential applications including cosmetic and fragrance utility.

9.
Small ; 11(11): 1302-9, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25381874

RESUMO

An effective method for the generation of hybrid organic-inorganic nanocomposite microparticles featuring controlled size and high structural stability is presented. In this process, an oil-in-water Pickering emulsion is formed using hydrophilic amine-functionalized silica nanoparticles. Covalent modification using a hydrophobic maleic anhydride copolymer then alters nanoparticle wettability during crosslinking, causing a core-shell to nanocomposite structural reorganization of the assemblies. The resulting porous nanocomposites maintain discrete microparticle structures and retain payloads in their oil phase even when incubated in competitive solvents such as ethanol.

10.
Chem Biodivers ; 11(11): 1700-33, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25408319

RESUMO

A series of thioether profragrances was prepared by reaction of different sulfanylalkanoates with δ-damascone and tested for their release efficiencies in a fabric-softener and an all-purpose cleaner application. Dynamic headspace analysis on dry cotton and on a ceramic plate revealed that the performance of the different precursors depended on the structure, but also on the particular conditions encountered in different applications. Moreover, profragrances derived from other α,ß-unsaturated fragrance aldehydes and ketones were synthesized analogously and evaluated using the same test protocol. Thioethers were found to be suitable precursors to release the corresponding fragrances, but neither the quantity of profragrance deposited from an aqueous environment onto the target surface, nor the amount of fragrance released after deposition could be linearly correlated to the hydrophilicity or hydrophobicity of the compounds. Different sets of compounds were found to be the best performers for different types of applications. Only one of the compounds evaluated in the present work, namely the thiolactic acid derivative of δ-damascone, efficiently released the corresponding fragrance in both of the tested applications. Profragrance development for functional perfumery thus remains a partially empirical endeavour. More knowledge (and control) of the various application conditions are required for an efficient profragrance design.


Assuntos
Aldeídos/síntese química , Éteres/química , Cetonas/síntese química , Perfumes/química , Compostos de Sulfidrila/química , Aldeídos/química , Cetonas/química , Estrutura Molecular , Estereoisomerismo , Fatores de Tempo
11.
J Chromatogr A ; 969(1-2): 103-10, 2002 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-12385383

RESUMO

The present work focused on the surface characterization and fragrance interactions of a common cotton towel at different relative humidities (RHs) using inverse gas chromatography (IGC) and dynamic vapour sorption. The sigmoidal water sorption isotherms showed a maximum of 16% (w/w) water uptake with limited swelling at 100% RH. This means that water interacts strongly with cotton and might change its initial physico-chemical properties. The same cotton towel was then packed in a glass column and characterized by IGC at different relative humidities, calculating the dispersive and specific surface energy components. The dispersive component of the surface energy decreases slightly as a function of relative humidity (42 mJ/m2 at 0% RH to 36 mJ/m2 at 80% RH) which would be expected from swelling of the humidified cotton. The Gutmann's donor constant Kd increased from 0.28 kJ/mol at 0% RH to 0.42 kJ/mol at 80% RH, indicating that a greater hydrophilic surface exists at 80% RH, which is also as expected. Water, undecane and four fragrance molecules (dimetol, benzyl acetate, decanal and phenylethanol) were used to investigate cotton-fragrance interactions between 0 and 80% RH. The adsorption enthalpies and the Henry's constants were calculated and are discussed. The higher values for the adsorption enthalpies of polar molecules such as dimetol and phenylethanol suggest the presence of hydrogen bonds as the main adsorption mechanism. The Henry's constant of dimetol was also determined by headspace gas chromatography measurements at 20% RH, giving a similar value (230 nmol/Pa g by IGC and 130 nmol/Pa g by headspace GC), supporting the usefulness of IGC for such determinations. This work confirms the usefulness of chromatographic methods to investigate biopolymers such as textiles, starches and hairs.


Assuntos
Cromatografia Gasosa/métodos , Fibra de Algodão , Umidade , Odorantes , Têxteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...