Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Tissue Eng Regen Med ; 16(12): 1261-1275, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36437574

RESUMO

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease of unknown cause. The interaction of immune system cells and the secretion of inflammatory cytokines with synovial cells leads to severe inflammation in the affected joints. Currently, medications, including non-steroidal anti-inflammatory drugs, glucocorticoids, and more recently, disease-modifying anti-rheumatic drugs, are used to reduce inflammation. However, long-term use of these drugs causes adverse effects or resistance in a considerable number of RA patients. Recent findings revealed the safety and efficacy of mesenchymal stromal cells (MSCs)-based therapies both in RA animal models and clinical trials. Here, the beneficial effects of bone marrow-derived heterogeneous MSCs (BM-hMSCs) and Wharton jelly-derived MSCs (WJ-MSCs) at early passages were compared to BM-derived clonal MSCs (BM-cMSCs) at high passage number on a rat model of collagen-induced arthritis. Results showed that systemic delivery of MSCs significantly reversed adverse changes in body weight, paw swelling, and arthritis score in all MSC-treated groups. Radiological images and histological evaluation demonstrated the therapeutic effects of MSCs. There was a decrease in serum level of anti-collagen type II immunoglobulin G and the inflammatory cytokines interleukin (IL)-1ß, IL-6, IL-17, and tumor necrosis factor-α in all MSC-treated groups. In contrast, an increase in inhibitory cytokines transforming growth factor-ß and IL-10 was seen. Notably, the long-term passages of BM-cMSCs could alleviate RA symptoms similar to the early passages of WJ-MSCs and BM-hMSCs. The importance of BM-cMSCs is the potential to establish cell banks with billions of cells derived from a single donor that could be a competitive cell-based therapy to treat RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Células-Tronco Mesenquimais , Geleia de Wharton , Humanos , Ratos , Animais , Artrite Experimental/terapia , Artrite Reumatoide/terapia , Citocinas , Inflamação
2.
Arthritis Res Ther ; 21(1): 292, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31847895

RESUMO

OBJECTIVES: To examine the ability of takinib, a selective transforming growth factor beta-activated kinase 1 (TAK1) inhibitor, to reduce the severity of murine type II collagen-induced arthritis (CIA), and to affect function of synovial cells. METHODS: Following the induction of CIA, mice were treated daily with takinib (50 mg/kg) and clinical scores assessed. Thirty-six days post-CIA induction, histology was performed on various joints of treated and vehicle-treated animals. Inflammation, pannus, cartilage damage, bone resorption, and periosteal bone formation were quantified. Furthermore, pharmacokinetics of takinib were evaluated by LC-MS in various tissues. Rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) cells were cultured with 10 µM takinib and cytokine secretion analyzed by cytokine/chemokine proteome array. Cytotoxicity of takinib for RA-FLS was measured with 24 to 48 h cultures in the presence or absence of tumor necrosis factor (TNF). RESULTS: Here, we show takinib's ability to reduce the clinical score in the CIA mouse model of rheumatoid arthritis (RA) (p < 0.001). TAK1 inhibition reduced inflammation (p < 0.01), cartilage damage (p < 0.01), pannus, bone resorption, and periosteal bone formation and periosteal bone width in all joints of treated mice compared to vehicle treated. Significant reduction of inflammation (p < 0.004) and cartilage damage (p < 0.004) were observed in the knees of diseased treated animals, with moderate reduction seen in the forepaws and hind paws. Furthermore, the pharmacokinetics of takinib show rapid plasma clearance (t½ = 21 min). In stimulated RA-FLS cells, takinib reduced GROα, G-CSF, and ICAM-1 pro-inflammatory cytokine signaling. CONCLUSION: Our findings support the hypothesis that TAK1 targeted therapy represents a novel therapeutic axis to treat RA and other inflammatory diseases.


Assuntos
Artrite Experimental/prevenção & controle , Benzamidas/farmacologia , Benzimidazóis/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , Sinoviócitos/efeitos dos fármacos , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/prevenção & controle , Benzamidas/farmacocinética , Benzimidazóis/farmacocinética , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/prevenção & controle , Articulação do Joelho/efeitos dos fármacos , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , MAP Quinase Quinase Quinases/metabolismo , Camundongos Endogâmicos DBA , Inibidores de Proteínas Quinases/farmacologia , Índice de Gravidade de Doença , Sinoviócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...