Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 51(19): 4055-8, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25660394

RESUMO

A pretargeted imaging strategy based on the HaloTag dehalogenase enzyme is described. Here, a HaloTag-Trastuzumab conjugate has been used as the primary agent targeting HER2 expression, and three new radiolabelled HaloTag ligands have been used as secondary agents, two of which offer dual-modality (SPECT/optical) imaging capability.


Assuntos
Anticorpos Monoclonais Humanizados/metabolismo , Halogênios/metabolismo , Hidrolases/metabolismo , Imagem Óptica/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Linhagem Celular Tumoral , Humanos , Ligantes , Trastuzumab
2.
Mol Biol Cell ; 11(8): 2553-63, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10930453

RESUMO

Cortical flow, the directed movement of cortical F-actin and cortical organelles, is a basic cellular motility process. Microtubules are thought to somehow direct cortical flow, but whether they do so by stimulating or inhibiting contraction of the cortical actin cytoskeleton is the subject of debate. Treatment of Xenopus oocytes with phorbol 12-myristate 13-acetate (PMA) triggers cortical flow toward the animal pole of the oocyte; this flow is suppressed by microtubules. To determine how this suppression occurs and whether it can control the direction of cortical flow, oocytes were subjected to localized manipulation of either the contractile stimulus (PMA) or microtubules. Localized PMA application resulted in redirection of cortical flow toward the site of application, as judged by movement of cortical pigment granules, cortical F-actin, and cortical myosin-2A. Such redirected flow was accelerated by microtubule depolymerization, showing that the suppression of cortical flow by microtubules is independent of the direction of flow. Direct observation of cortical F-actin by time-lapse confocal analysis in combination with photobleaching showed that cortical flow is driven by contraction of the cortical F-actin network and that microtubules suppress this contraction. The oocyte germinal vesicle serves as a microtubule organizing center in Xenopus oocytes; experimental displacement of the germinal vesicle toward the animal pole resulted in localized flow away from the animal pole. The results show that 1) cortical flow is directed toward areas of localized contraction of the cortical F-actin cytoskeleton; 2) microtubules suppress cortical flow by inhibiting contraction of the cortical F-actin cytoskeleton; and 3) localized, microtubule-dependent suppression of actomyosin-based contraction can control the direction of cortical flow. We discuss these findings in light of current models of cortical flow.


Assuntos
Actinas/fisiologia , Microtúbulos/fisiologia , Oócitos/fisiologia , Actinas/efeitos dos fármacos , Actinas/metabolismo , Animais , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , Microscopia Confocal , Centro Organizador dos Microtúbulos/efeitos dos fármacos , Centro Organizador dos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/fisiologia , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Modelos Biológicos , Movimento/efeitos dos fármacos , Miosinas/efeitos dos fármacos , Miosinas/metabolismo , Nocodazol/farmacologia , Oócitos/citologia , Oócitos/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...