Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791504

RESUMO

Optimal oxygen management during pediatric cardiopulmonary bypass (CPB) is unknown. We previously demonstrated an increase in cortical mitochondrial reactive oxygen species and decreased mitochondrial function after CPB using hyperoxic oxygen management. This study investigates whether controlled oxygenation (normoxia) during CPB reduces cortical mitochondrial dysfunction and oxidative injury. Ten neonatal swine underwent three hours of continuous CPB at 34 °C (flow > 100 mL/kg/min) via cervical cannulation targeting a partial pressure of arterial oxygen (PaO2) goal < 150 mmHg (normoxia, n = 5) or >300 mmHg (hyperoxia, n = 5). The animals underwent continuous hemodynamic monitoring and serial arterial blood sampling. Cortical microdialysate was serially sampled to quantify the glycerol concentration (represents neuronal injury) and lactate-to-pyruvate ratio (represents bioenergetic dysfunction). The cortical tissue was analyzed via high-resolution respirometry to quantify mitochondrial oxygen consumption and reactive oxygen species generation, and cortical oxidized protein carbonyl concentrations were quantified to assess for oxidative damage. Serum PaO2 was higher in hyperoxia animals throughout CPB (p < 0.001). There were no differences in cortical glycerol concentration between groups (p > 0.2). The cortical lactate-to-pyruvate ratio was modestly elevated in hyperoxia animals (p < 0.03) but the values were not clinically significant (<30). There were no differences in cortical mitochondrial respiration (p = 0.48), protein carbonyls (p = 0.74), or reactive oxygen species generation (p = 0.93) between groups. Controlled oxygenation during CPB does not significantly affect cortical mitochondrial function or oxidative injury in the acute setting. Further evaluation of the short and long-term effects of oxygen level titration during pediatric CPB on cortical tissue and other at-risk brain regions are needed, especially in the presence of cyanosis.


Assuntos
Animais Recém-Nascidos , Ponte Cardiopulmonar , Mitocôndrias , Oxigênio , Espécies Reativas de Oxigênio , Animais , Suínos , Ponte Cardiopulmonar/efeitos adversos , Ponte Cardiopulmonar/métodos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxigênio/metabolismo , Consumo de Oxigênio , Ácido Láctico/metabolismo , Ácido Láctico/sangue , Estresse Oxidativo , Córtex Cerebral/metabolismo , Ácido Pirúvico/metabolismo , Hiperóxia/metabolismo
2.
World J Pediatr Congenit Heart Surg ; : 21501351241232077, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646826

RESUMO

Objectives: We previously demonstrated cerebral mitochondrial dysfunction in neonatal swine immediately following a period of full-flow cardiopulmonary bypass (CPB). The extent to which this dysfunction persists in the postoperative period and its correlation with other markers of cerebral bioenergetic failure and injury is unknown. We utilized a neonatal swine model to investigate the early evolution of mitochondrial function and cerebral bioenergetic failure after CPB. Methods: Twenty piglets (mean weight 4.4 ± 0.5 kg) underwent 3 h of CPB at 34 °C via cervical cannulation and were followed for 8, 12, 18, or 24 h (n = 5 per group). Markers of brain tissue damage (glycerol) and bioenergetic dysfunction (lactate to pyruvate ratio) were continuously measured in cerebral microdialysate samples. Control animals (n = 3, mean weight 4.1 ± 1.2 kg) did not undergo cannulation or CPB. Brain tissue was extracted immediately after euthanasia to obtain ex-vivo cortical mitochondrial respiration and frequency of cortical microglial nodules (indicative of cerebral microinfarctions) via neuropathology. Results: Both the lactate to pyruvate ratio (P < .0001) and glycerol levels (P = .01) increased in cerebral microdialysate within 8 h after CPB. At 24 h post-CPB, cortical mitochondrial respiration was significantly decreased compared with controls (P = .046). The presence of microglial nodules increased throughout the study period (24 h) (P = .01, R2 = 0.9). Conclusion: CPB results in impaired cerebral bioenergetics that persist for at least 24 h. During this period of bioenergetic impairment, there may be increased susceptibility to secondary injury related to alterations in metabolic delivery or demand, such as hypoglycemia, seizures, and decreased cerebral blood flow.

3.
Metabolites ; 13(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37999249

RESUMO

Cardiopulmonary bypass (CPB) provides cerebral oxygenation and blood flow (CBF) during neonatal congenital heart surgery, but the impacts of CPB on brain oxygen supply and metabolic demands are generally unknown. To elucidate this physiology, we used diffuse correlation spectroscopy and frequency-domain diffuse optical spectroscopy to continuously measure CBF, oxygen extraction fraction (OEF), and oxygen metabolism (CMRO2) in 27 neonatal swine before, during, and up to 24 h after CPB. Concurrently, we sampled cerebral microdialysis biomarkers of metabolic distress (lactate-pyruvate ratio) and injury (glycerol). We applied a novel theoretical approach to correct for hematocrit variation during optical quantification of CBF in vivo. Without correction, a mean (95% CI) +53% (42, 63) increase in hematocrit resulted in a physiologically improbable +58% (27, 90) increase in CMRO2 relative to baseline at CPB initiation; following correction, CMRO2 did not differ from baseline at this timepoint. After CPB initiation, OEF increased but CBF and CMRO2 decreased with CPB time; these temporal trends persisted for 0-8 h following CPB and coincided with a 48% (7, 90) elevation of glycerol. The temporal trends and glycerol elevation resolved by 8-24 h. The hematocrit correction improved quantification of cerebral physiologic trends that precede and coincide with neurological injury following CPB.

4.
Biomed Opt Express ; 14(6): 2432-2448, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37342705

RESUMO

In this study, we used diffuse optics to address the need for non-invasive, continuous monitoring of cerebral physiology following traumatic brain injury (TBI). We combined frequency-domain and broadband diffuse optical spectroscopy with diffuse correlation spectroscopy to monitor cerebral oxygen metabolism, cerebral blood volume, and cerebral water content in an established adult swine-model of impact TBI. Cerebral physiology was monitored before and after TBI (up to 14 days post injury). Overall, our results suggest that non-invasive optical monitoring can assess cerebral physiologic impairments post-TBI, including an initial reduction in oxygen metabolism, development of cerebral hemorrhage/hematoma, and brain swelling.

5.
Metabolites ; 12(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36005609

RESUMO

Neonates undergoing cardiac surgery involving aortic arch reconstruction are at an increased risk for hypoxic-ischemic brain injury. Deep hypothermia is utilized to help mitigate this risk when periods of circulatory arrest are needed for surgical repair. Here, we investigate correlations between non-invasive optical neuromonitoring of cerebral hemodynamics, which has recently shown promise for the prediction of postoperative white matter injury in this patient population, and invasive cerebral microdialysis biomarkers. We compared cerebral tissue oxygen saturation (StO2), relative total hemoglobin concentration (rTHC), and relative cerebral blood flow (rCBF) measured by optics against the microdialysis biomarkers of metabolic stress and injury (lactate-pyruvate ratio (LPR) and glycerol) in neonatal swine models of deep hypothermic cardiopulmonary bypass (DHCPB), selective antegrade cerebral perfusion (SACP), and deep hypothermic circulatory arrest (DHCA). All three optical parameters were negatively correlated with LPR and glycerol in DHCA animals. Elevation of LPR was found to precede the elevation of glycerol by 30-60 min. From these data, thresholds for the detection of hypoxic-ischemia-associated cerebral metabolic distress and neurological injury are suggested. In total, this work provides insight into the timing and mechanisms of neurological injury following hypoxic-ischemia and reports a quantitative relationship between hypoxic-ischemia severity and neurological injury that may inform DHCA management.

6.
Resuscitation ; 178: 12-18, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35817269

RESUMO

AIM: Cardiac arrest often results in severe neurologic injury. Improving care for these patients is difficult as few noninvasive biomarkers exist that allow physicians to monitor neurologic health. The amount of low-frequency power (LFP, 0.01-0.1 Hz) in cerebral haemodynamics has been used in functional magnetic resonance imaging as a marker of neuronal activity. Our hypothesis was that increased LFP in cerebral blood flow (CBF) would be correlated with improvements in invasive measures of neurologic health. METHODS: We adapted the use of LFP for to monitoring of CBF with diffuse correlation spectroscopy. We asked whether LFP (or other optical biomarkers) correlated with invasive microdialysis biomarkers (lactate-pyruvate ratio - LPR - and glycerol concentration) of neuronal injury in the 4 h after return of spontaneous circulation in a swine model of paediatric cardiac arrest (Sus scrofa domestica, 8-11 kg, 51% female). Associations were tested using a mixed linear effects model. RESULTS: We found that higher LFP was associated with higher LPR and higher glycerol concentration. No other biomarkers were associated with LPR; cerebral haemoglobin concentration, oxygen extraction fraction, and one EEG metric were associated with glycerol concentration. CONCLUSION: Contrary to expectations, higher LFP in CBF was correlated with worse invasive biomarkers. Higher LFP may represent higher neurologic activity, or disruptions in neurovascular coupling. Either effect may be harmful in the acute period after cardiac arrest. Thus, these results suggest our methodology holds promise for development of new, clinically relevant biomarkers than can guide resuscitation and post-resuscitation care. Institutional protocol number: 19-001327.


Assuntos
Glicerol , Parada Cardíaca , Biomarcadores , Circulação Cerebrovascular/fisiologia , Feminino , Parada Cardíaca/complicações , Humanos , Masculino , Ressuscitação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...