Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
2.
Ann N Y Acad Sci ; 1465(1): 59-75, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31721233

RESUMO

The era of precision medicine has generated advances in various fields of science and medicine with the potential for a paradigm shift in healthcare delivery that will ultimately lead to an individualized approach to medicine. Such timely topics were explored in 2018 at a workshop held at the Third International Conference on One Medicine One Science (iCOMOS), in Minneapolis, Minnesota. A broad range of scientists and regulatory experts provided detailed insights into the challenges and opportunities associated with precision medicine and gene editing. There was a general consensus that advances in studying the genomic traits driving differential pharmacogenomics will undoubtedly enhance individualized treatments for a wide variety of diseases. Ethical considerations, societal implications, approaches for prioritizing safe and secure use of treatment modalities, and the advent of high-throughput computing and analysis of large, complex datasets were discussed. Large biobanks, such as the All of Us Research Program and the Veterans Affairs Million Veterans Program, can aid studies of various conditions in massive cohorts of patients. As the applications of precision medicine continue to mature, the full potential and promise of these individualized approaches will continue to yield important advances in transplant medicine, oncology, public health, agriculture, pharmacology, and bioinformatics.


Assuntos
Biologia Computacional , Edição de Genes/tendências , Farmacogenética/tendências , Medicina de Precisão/tendências , Agricultura , Ensaios de Triagem em Larga Escala , Humanos , Saúde da População
3.
Trop Med Infect Dis ; 4(2)2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30974815

RESUMO

The global burden of infectious diseases and the increased attention to natural, accidental, and deliberate biological threats has resulted in significant investment in infectious disease research. Translating the results of these studies to inform prevention, detection, and response efforts often can be challenging, especially if prior relationships and communications have not been established with decision-makers. Whatever scientific information is shared with decision-makers before, during, and after public health emergencies is highly dependent on the individuals or organizations who are communicating with policy-makers. This article briefly describes the landscape of stakeholders involved in information-sharing before and during emergencies. We identify critical gaps in translation of scientific expertise and results, and biosafety and biosecurity measures to public health policy and practice with a focus on One Health and zoonotic diseases. Finally, we conclude by exploring ways of improving communication and funding, both of which help to address the identified gaps. By leveraging existing scientific information (from both the natural and social sciences) in the public health decision-making process, large-scale outbreaks may be averted even in low-income countries.

4.
Artigo em Inglês | MEDLINE | ID: mdl-30859099

RESUMO

Biology and biotechnology have changed dramatically during the past 20 years, in part because of increases in computational capabilities and use of engineering principles to study biology. The advances in supercomputing, data storage capacity, and cloud platforms enable scientists throughout the world to generate, analyze, share, and store vast amounts of data, some of which are biological and much of which may be used to understand the human condition, agricultural systems, evolution, and environmental ecosystems. These advances and applications have enabled: (1) the emergence of data science, which involves the development of new algorithms to analyze and visualize data; and (2) the use of engineering approaches to manipulate or create new biological organisms that have specific functions, such as production of industrial chemical precursors and development of environmental bio-based sensors. Several biological sciences fields harness the capabilities of computer, data, and engineering sciences, including synthetic biology, precision medicine, precision agriculture, and systems biology. These advances and applications are not limited to one country. This capability has economic and physical consequences, but is vulnerable to unauthorized intervention. Healthcare and genomic information of patients, information about pharmaceutical and biotechnology products in development, and results of scientific research have been stolen by state and non-state actors through infiltration of databases and computer systems containing this information. Countries have developed their own policies for governing data generation, access, and sharing with foreign entities, resulting in asymmetry of data sharing. This paper describes security implications of asymmetric access to and use of biological data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...