Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Evolution ; 75(12): 3115-3131, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34687472

RESUMO

The independent and repeated adaptation of populations to similar environments often results in the evolution of similar forms. This phenomenon creates a strong correlation between phenotype and environment and is referred to as parallel evolution. However, we are still largely unaware of the dynamics of parallel evolution, as well as the interplay between phenotype and genotype within natural systems. Here, we examined phenotypic and genotypic parallel evolution in multiple parapatric Dune-Headland coastal ecotypes of an Australian wildflower, Senecio lautus. We observed a clear trait-environment association in the system, with all replicate populations having evolved along the same phenotypic evolutionary trajectory. Similar phenotypes have arisen via mutational changes occurring in different genes, although many share the same biological functions. Our results shed light on how replicated adaptation manifests at the phenotypic and genotypic levels within populations, and highlight S. lautus as one of the most striking cases of phenotypic parallel evolution in nature.


Assuntos
Senécio , Austrália , Ecótipo , Genótipo , Fenótipo , Senécio/genética
2.
Evolution ; 67(9): 2515-29, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24033164

RESUMO

Adaptation to replicate environments is often achieved through similar phenotypic solutions. Whether selection also produces convergent genomic changes in these situations remains largely unknown. The variable groundsel, Senecio lautus, is an excellent system to investigate the genetic underpinnings of convergent evolution, because morphologically similar forms of these plants have adapted to the same environments along the coast of Australia. We compared range-wide patterns of genomic divergence in natural populations of this plant and searched for regions putatively affected by natural selection. Our results indicate that environmental adaptation followed complex genetic trajectories, affecting multiple loci, implying both the parallel recruitment of the same alleles and the divergence of completely different genomic regions across geography. An analysis of the biological functions of candidate genes suggests that adaptation to coastal environments may have occurred through the recruitment of different genes participating in similar processes. The relatively low genetic convergence that characterizes the parallel evolution of S. lautus forms suggests that evolution is more constrained at higher levels of biological organization.


Assuntos
Adaptação Fisiológica/genética , Meio Ambiente , Especiação Genética , Senécio/genética , Evolução Molecular , Variação Genética , Genoma de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...