Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Morphol ; 285(8): e21751, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39041670

RESUMO

Although the knowledge of the skeletal morphology of bees has progressed enormously, a corresponding advance has not happened for the muscular system. Most of the knowledge about bee musculature was generated over 50 years ago, well before the digital revolution for anatomical imaging, including the application of microcomputed tomography. This technique, in particular, has made it possible to dissect small insects digitally, document anatomy efficiently and in detail, and visualize these data three dimensionally. In this study, we document the skeletomuscular system of a cuckoo bee, Thyreus albomaculatus and, with that, we provide a 3D atlas of bee skeletomuscular anatomy. The results obtained for Thyreus are compared with representatives of two other bee families (Andrenidae and Halictidae), to evaluate the generality of our morphological conclusions. Besides documenting 199 specific muscles in terms of origin, insertion, and structure, we update the interpretation of complex homologies in the maxillolabial complex of bee mouthparts. We also clarify the complicated 3D structure of the cephalic endoskeleton, identifying the tentorial, hypostomal, and postgenal structures and their connecting regions. We describe the anatomy of the medial elevator muscles of the head, precisely identifying their origins and insertions as well as their homologs in other groups of Hymenoptera. We reject the hypothesis that the synapomorphic propodeal triangle of Apoidea is homologous with the metapostnotum, and instead recognize that this is a modification of the third phragma. We recognize two previously undocumented metasomal muscle groups in bees, clarifying the serial skeletomusculature of the metasoma and revealing shortcomings of Snodgrass' "internal-external" terminological system for the abdomen. Finally, we elucidate the muscular structure of the sting apparatus, resolving previously unclear interpretations. The work conducted herein not only provides new insights into bee morphology but also represents a source for future phenomic research on Hymenoptera.


Assuntos
Músculos , Animais , Abelhas/anatomia & histologia , Músculos/anatomia & histologia , Imageamento Tridimensional , Microtomografia por Raio-X
2.
Sci Rep ; 14(1): 10447, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714726

RESUMO

Polyandry, the practice of females mating with multiple males, is a strategy found in many insect groups. Whether it increases the likelihood of receiving beneficial genes from male partners and other potential benefits for females is controversial. Strepsiptera are generally considered monandrous, but in a few species females have been observed copulating serially with multiple males. Here we show that the offspring of a single female can have multiple fathers in two Strepsiptera species: Stylops ovinae (Stylopidae) and Xenos vesparum (Xenidae). We studied female polyandry in natural populations of these two species by analysis of polymorphic microsatellite loci. Our results showed that several fathers can be involved in both species, in some cases up to four. Mating experiments with S. ovinae have shown that the first male to mates with a given female contributes to a higher percentage of the offspring than subsequent males. In X. vesparum, however, we found no significant correlation between mating duration and offspring contribution. The prolonged copulation observed in S. ovinae may have the advantage of reducing competition with sperm from other males. Our results show that monandry may not be the general pattern of reproduction in the insect order Strepsiptera.


Assuntos
Insetos , Repetições de Microssatélites , Comportamento Sexual Animal , Espermatozoides , Animais , Masculino , Feminino , Comportamento Sexual Animal/fisiologia , Espermatozoides/fisiologia , Insetos/fisiologia , Repetições de Microssatélites/genética , Reprodução/fisiologia
3.
Zookeys ; 1178: 39-59, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692914

RESUMO

A new species of the order Zoraptera, Zorotypuskomatsui Matsumura, Maruyama, Ntonifor & Beutel, sp. nov., is described from Cameroon. The female and male morphology of another species, Z.vinsoni, is re-described, and its new distribution in Madagascar is recorded. A particular focus is on the male postabdominal morphology. This is apparently a crucial body region in the very small order with an extreme variation of the genital apparatus but otherwise a very uniform morphology. The male of the newly described species shares rudimentary male genitalia and well-developed postabdominal projections with the distantly related Spermozorosimpolitus, apparently a result of parallel evolution. Whether males of Z.komatsui also perform external sperm transfer like S.impolitus remains to be shown. The collecting of the material used for this study suggests that the present knowledge of zorapteran species diversity of the Afrotropical region is very fragmentary.

4.
Syst Biol ; 72(5): 1084-1100, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37094905

RESUMO

The spectacular radiation of insects has produced a stunning diversity of phenotypes. During the past 250 years, research on insect systematics has generated hundreds of terms for naming and comparing them. In its current form, this terminological diversity is presented in natural language and lacks formalization, which prohibits computer-assisted comparison using semantic web technologies. Here we propose a Model for Describing Cuticular Anatomical Structures (MoDCAS) which incorporates structural properties and positional relationships for standardized, consistent, and reproducible descriptions of arthropod phenotypes. We applied the MoDCAS framework in creating the ontology for the Anatomy of the Insect Skeleto-Muscular system (AISM). The AISM is the first general insect ontology that aims to cover all taxa by providing generalized, fully logical, and queryable, definitions for each term. It was built using the Ontology Development Kit (ODK), which maximizes interoperability with Uberon (Uberon multispecies anatomy ontology) and other basic ontologies, enhancing the integration of insect anatomy into the broader biological sciences. A template system for adding new terms, extending, and linking the AISM to additional anatomical, phenotypic, genetic, and chemical ontologies is also introduced. The AISM is proposed as the backbone for taxon-specific insect ontologies and has potential applications spanning systematic biology and biodiversity informatics, allowing users to: 1) use controlled vocabularies and create semiautomated computer-parsable insect morphological descriptions; 2) integrate insect morphology into broader fields of research, including ontology-informed phylogenetic methods, logical homology hypothesis testing, evo-devo studies, and genotype to phenotype mapping; and 3) automate the extraction of morphological data from the literature, enabling the generation of large-scale phenomic data, by facilitating the production and testing of informatic tools able to extract, link, annotate, and process morphological data. This descriptive model and its ontological applications will allow for clear and semantically interoperable integration of arthropod phenotypes in biodiversity studies.


Assuntos
Artrópodes , Animais , Filogenia , Insetos , Informática , Biodiversidade
5.
Biol Lett ; 19(3): 20220559, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36855857

RESUMO

Conversion of forewings into hardened covers, elytra, was a ground-breaking morphological adaptation that has contributed to the extraordinary evolutionary success of beetles. Nevertheless, the knowledge of the functional aspects of these structures is still fragmentary and scattered across a large number of studies. Here, we have synthesized the presently available information on the evolution, development, modifications and biological functions of this crucial evolutionary novelty. The formation of elytra took place in the earliest evolution of Coleoptera, very likely already in the Carboniferous, and was achieved through the gradual process of progressive forewing sclerotization and the formation of inward directed epipleura and a secluded sub-elytral space. In many lineages of modern beetles, the elytra have been distinctly modified. This includes multiple surface modifications, a rigid connection or fusion of the elytra, or partial or complete reduction. Beetle elytra can be involved in a very broad spectrum of functions: mechanical protection of hind wings and body, anti-predator strategies, thermoregulation and water saving, water harvesting, flight, hind wing folding, diving and swimming, self-cleaning and burrow cleaning, phoresy of symbiotic organisms, mating and courtship, and acoustic communication. We postulate that the potential of the elytra to take over multiple tasks has enormously contributed to the unparalleled diversification of beetles.


Assuntos
Besouros , Mergulho , Animais , Acústica , Regulação da Temperatura Corporal , Água
6.
J Morphol ; 284(6): e21576, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36930728

RESUMO

The morphology of the adult free-living females of Mengenilla moldrzyki and Eoxenos laboulbenei (Strepsiptera, Mengenillidae) was documented with µCT-based 3D reconstructions and histological serial sections. External and internal features of both species are characterized by far-reaching specialization and structural simplification. The well-developed mandibles are moved by large muscles. Other mouthparts and their corresponding musculature are simplified or absent. The brain is partly shifted into the prothorax. It is followed by a single postcerebral ganglionic complex also containing the subesophageal ganglion and an unpaired abdominal nerve. Postcephalic sclerites are absent, except for the plate-like pronotum and small pleural sclerites. Wings and associated muscles are missing. The lumina of the large midgut and the anterior hindgut are disconnected. Seven bulb-shaped Malpighian tubules in M. moldrzyki is the highest number yet described for Strepsiptera. The 10-segmented abdomen lacks appendages. An unpaired birth organ opens ventrally on abdominal segment VII. The entire body cavity is filled with numerous freely floating eggs, 1386 in the specimen of M. moldrzyki and 721 in E. laboulbenei. Genital ducts, defined gonads, and genital glands are missing. The morphology of female Mengenillidae is discussed with respect to sexual dimorphism and structural features of the postembryonic stages. Phylogenetic implications are outlined.


Assuntos
Insetos , Túbulos de Malpighi , Feminino , Animais , Filogenia , Insetos/anatomia & histologia , Abdome , Músculos/anatomia & histologia
7.
Insect Sci ; 30(5): 1445-1463, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36692245

RESUMO

Dilaridae are a distinctive and phylogenetically ambiguous neuropteran family. So far, the anatomy of the immature stages remains largely unknown. We examined the 1st instar larvae of Dilar montanus in detail and present results of live observations for the first time. The minute, cryptic larvae display features correlated with their underground lifestyle: for instance, a strongly flattened head, stout antennae, eyelessness, and burrowing forelegs. In contrast to molecular data, several characters suggest a 'dilarid clade' combining Dilaridae with Mantispoidea, for instance a very thin and curved or reduced tentorial bridge, and an elongated postmentum. We found intrinsic antennal muscles and Johnston's organ, the first record of these structures in holometabolous larvae. This proves that the first 2 larval antennomeres are homologous with the scapus and pedicellus. The described characters are discussed and analyzed with an updated matrix of neuropteran larval characters. Alternative scenarios of character evolution are presented. Additionally, we show how the 1st-instar larvae move and feed in the substrate, and also provide a high-resolution video recording of the function of the elongate tubular ovipositor and the egg-laying behavior in an adult female under natural conditions.

8.
J Morphol ; 284(1): e21527, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302112

RESUMO

We document external and internal thoracic structures of the free-living pselaphine beetle Pselaphus heisei (Pselaphitae) using a set of traditional and modern techniques. Like in the specialized myrmecophile Claviger testaceus (Clavigeritae), the skeletal elements of the pro- and pterothorax are highly compact, with largely reduced inter- and intrasegmental sutures. Features previously listed as synapomorphies of staphylinid subgroups, to which Pselaphinae belong, are confirmed for P. heisei. The only previously proposed thoracic synapomorphy of Pselaphinae, the mesoventral foveae, is likely transformed in P. heisei: we assume that the concavities are directed mesad and internally fused, thus forming a broad channel ("perforation") extending through the keel-like median region of the mesoventrite. The prothoracic foveal system is strongly reduced, with only one pair of pits present in front of the procoxae. Their internal invaginations form a transverse ventral endoskeletal bar that stabilizes the prothorax. The condition observed in the free-living P. heisei is in contrast with previous hypotheses linking the reduction of the foveal system with myrmecophily. Moreover, traces of the mesoventral foveae are even preserved in the highly specialized inquiline C. testaceus. Gland cells are associated with areas of hyaline squamose setae on different body regions, suggesting release of secretions on the ventral side of the head, pro- and mesothorax, and abdominal base. Similar specialized setal patches are common in Pselaphini and related groups within Pselaphitae. The prothoracic musculature in P. heisei is more complex than that in the myrmecophilous C. testaceus and the free-living, unspecialized Creophilus maxillosus (Staphylininae). The metathoracic muscle system is strongly simplified, demonstrating that P. heisei cannot fly, even though wings, some skeletal elements of the flight apparatus, and some small direct flight muscles are preserved. It cannot be fully excluded that indirect flight muscles and thus a functional flight apparatus is preserved in a certain percentage of individuals.


Assuntos
Besouros , Animais , Besouros/anatomia & histologia , Asas de Animais/anatomia & histologia , Músculos
9.
J Morphol ; 284(1): e21532, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36317298

RESUMO

Platypsyllus castoris is closely associated with beavers and displays a unique set of structural specializations. We document the morphology of adults with modern techniques, and interpret evolutionary changes linked with the specific life style. The small subfamily Platypsyllinae has evolved an entire suite of features correlated with a more or less close association with mammals, for instance a flattened body, a dorsal cephalic shield, flightlessness, eye reduction, and depigmentation. Within this small group, Platypsyllus displays numerous autapomorphic features, correlated with a close association with the beaver. Essential is a combination of mechanical stabilization and firm anchorage on the host, and efficient forward movement in the fur. Exo- and endoskeletal structures of the head and thorax are reinforced by vertical cuticular columns and by an array of internal ridges. The antennae are shortened and strongly modified, the mandibles distinctly reduced and flattened, unsuitable for cutting, scraping or grinding. The musculature of the mouthparts is simplified, whereas an enhanced set of prepharyngeal and pharyngeal dilators forms an efficient sucking pump. The prothoracic musculature is strongly developed. In contrast, the pterothoracic muscle system is distinctly simplified, even though leg muscles are strongly developed. Using the legs, the flattened beetles move sideways through the dense fur of the beaver, using posteriorly directed groups of setae and ctenidia to prevent being pushed backwards by the densely arranged hairs. In contrast to the anterior body, the cuticle of the abdomen is thin, and the entire tagma flexible, with thin layers of segmental muscles. The hind gut is not connected with the mid gut. The beetles probably consume liquid, possibly with emulgated minute skin debris. As the morphology of the mouthparts excludes damage to the skin of the host, the association should not be addressed as ectoparasitic but as commensalism.


Assuntos
Besouros , Animais , Adaptação Fisiológica , Evolução Biológica , Besouros/anatomia & histologia , Mamíferos , Roedores , Simbiose
10.
PeerJ ; 10: e13655, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990910

RESUMO

Traumatic insemination describes an unusual form of mating during which a male penetrates the body wall of its female partner to inject sperm. Females unable to prevent traumatic insemination have been predicted to develop either traits of tolerance or of resistance, both reducing the fitness costs associated with the male-inflicted injury. The evolution of tolerance traits has previously been suggested for the bed bug. Here we present data suggesting that tolerance traits also evolved in females of the twisted-wing parasite species Stylops ovinae and Xenos vesparum. Using micro-indentation experiments and confocal laser scanning microscopy, we found that females of both investigated species possess a uniform resilin-rich integument that is notably thicker at penetration sites than at control sites. As the thickened cuticle does not seem to hamper penetration by males, we hypothesise that thickening of the cuticle resulted in reduced penetration damage and loss of haemolymph and in improved wound sealing. To evaluate the evolutionary relevance of the Stylops-specific paragenital organ and penis shape variation in the context of inter- and intraspecific competition, we conducted attraction and interspecific mating experiments, as well as a geometric-morphometric analysis of S. ovinae and X. vesparum penises. We found that S. ovinae females indeed attract sympatrically distributed congeneric males. However, only conspecific males were able to mate. In contrast, we did not observe any heterospecific male attraction by Xenos females. We therefore hypothesise that the paragenital organ in the genus Stylops represents a prezygotic mating barrier that prevents heterospecific matings.


Assuntos
Parasitos , Animais , Masculino , Feminino , Sêmen , Insetos/fisiologia , Inseminação , Reprodução
11.
Zookeys ; 1093: 1-134, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586542

RESUMO

The generic taxonomy and host specialization of Xenidae have been understood differently by previous authors. Although the recent generic classification has implied a specialization on the level of host families or subfamilies, the hypothesis that each xenid genus is specialized to a single host genus was also previously postulated. A critical evaluation of the classification of the genera of Xenidae is provided here based on morphology in accordance with results of recent molecular phylogenetic studies. External features of the female cephalothoraces and male cephalothecae were documented in detail with different techniques. Diagnoses and descriptions are presented for all 13 delimited genera. The earliest diverging genera are usually well characterized by unique features, whereas deeply nested genera are usually characterized by combinations of characters. Three new genera are described: Sphecixenos gen. nov., Tuberoxenos gen. nov., and Deltoxenos gen. nov. Five previously described genera are removed from synonymy: Tachytixenos Pierce, 1911, stat. res.; Brasixenos Kogan & Oliveira, 1966, stat. res.; Leionotoxenos Pierce, 1909, stat. res.; Eupathocera Pierce, 1908, stat. res.; and Macroxenos Schultze, 1925, stat. res. One former subgenus is elevated to generic rank: Nipponoxenos Kifune & Maeta, 1975, stat. res. Monobiaphila Pierce, 1909, syn. nov. and Montezumiaphila Brèthes, 1923, syn. nov. are recognized as junior synonyms of Leionotoxenos Pierce, 1909, stat. res. Ophthalmochlus Pierce, 1908, syn. nov., Homilops Pierce, 1908, syn. nov., Sceliphronechthrus Pierce, 1909, syn. nov., and Ophthalmochlus (Isodontiphila) Pierce, 1919, syn. nov. are recognized as junior synonyms of Eupathocera Pierce, 1908, stat. res. A preliminary checklist of 119 described species of Xenidae with information on their hosts and distribution is provided. The following 14 species are recognized as valid and restituted from synonymy: Tachytixenosindicus Pierce, 1911, stat. res.; Brasixenosacinctus Kogan & Oliveira, 1966, stat. res.; Brasixenosaraujoi (Oliveira & Kogan, 1962), stat. res.; Brasixenosbahiensis Kogan & Oliveira, 1966, stat. res.; Brasixenosbrasiliensis Kogan & Oliveira, 1966, stat. res.; Brasixenosfluminensis Kogan & Oliveria, 1966, stat. res.; Brasixenosmyrapetrus Trois, 1988, stat. res.; Brasixenoszikani Kogan & Oliveira, 1966, stat. res.; Leionotoxenoshookeri Pierce, 1909, stat. res.; Leionotoxenosjonesi Pierce, 1909, stat. res.; Leionotoxenoslouisianae Pierce, 1909, stat. res.; Eupathoceraluctuosae Pierce, 1911, stat. res.; Eupathoceralugubris Pierce, 1909, stat. res.; Macroxenospiercei Schultze, 1925, stat. res. New generic combinations are proposed for 51 species: Leionotoxenosarvensidis (Pierce, 1911), comb. nov.; Leionotoxenosbishoppi (Pierce, 1909), comb. nov.; Leionotoxenosforaminati (Pierce, 1911), comb. nov.; Leionotoxenosfundati (Pierce, 1911), comb. nov.; Leionotoxenoshuastecae (Székessy, 1965), comb. nov.; Leionotoxenositatiaiae (Trois, 1984), comb. nov.; Leionotoxenosneomexicanus (Pierce, 1919), comb. nov.; Leionotoxenosprolificum (Teson & Remes Lenicov, 1979), comb. nov.; Leionotoxenosrobertsoni (Pierce, 1911), comb. nov.; Leionotoxenostigridis (Pierce, 1911), comb. nov.; Leionotoxenosvigili (Brèthes, 1923), comb. nov.; Eupathoceraargentina (Brèthes, 1923), comb. nov.; Eupathoceraauripedis (Pierce, 1911), comb. nov.; Eupathocerabucki (Trois, 1984), comb. nov.; Eupathoceraduryi (Pierce, 1909), comb. nov.; Eupathoceraerynnidis (Pierce, 1911), comb. nov.; Eupathocerafasciati (Pierce, 1909), comb. nov.; Eupathocerafuliginosi (Brèthes, 1923), comb. nov.; Eupathocerainclusa (Oliveira & Kogan, 1963), comb. nov.; Eupathocerainsularis (Kifune, 1983), comb. nov.; Eupathoceramendozae (Brèthes, 1923), comb. nov.; Eupathocerapiercei (Brèthes, 1923), comb. nov.; Eupathocerastriati (Brèthes, 1923), comb. nov.; Eupathocerataschenbergi (Brèthes, 1923), comb. nov.; Eupathocerawestwoodii (Templeton, 1841), comb. nov.; Macroxenospapuanus (Székessy, 1956), comb. nov.; Sphecixenosabbotti (Pierce, 1909), comb. nov.; Sphecixenosastrolabensis (Székessy, 1956), comb. nov.; Sphecixenosdorae (Luna de Carvalho, 1956), comb. nov.; Sphecixenoserimae (Székessy, 1956), comb. nov.; Sphecixenosesakii (Hirashima & Kifune, 1962), comb. nov.; Sphecixenosgigas (Pasteels, 1950), comb. nov.; Sphecixenoskurosawai (Kifune, 1984), comb. nov.; Sphecixenoslaetum (Ogloblin, 1926), comb. nov.; Sphecixenosorientalis (Kifune, 1985), comb. nov.; Sphecixenosreticulatus (Luna de Carvalho, 1972), comb. nov.; Sphecixenossimplex (Székessy, 1956), comb. nov.; Sphecixenosvanderiisti (Pasteels, 1952), comb. nov.; Tuberoxenosaltozambeziensis (Luna de Carvalho, 1959), comb. nov.; Tuberoxenossinuatus (Pasteels, 1956), comb. nov.; Tuberoxenossphecidarum (Siebold, 1839), comb. nov.; Tuberoxenosteres (Pasteels, 1950), comb. nov.; Tuberoxenostibetanus (Yang, 1981), comb. nov.; Deltoxenosbequaerti (Luna de Carvalho, 1956), comb. nov.; Deltoxenosbidentatus (Pasteels, 1950), comb. nov.; Deltoxenoshirokoae (Kifune & Yamane, 1992), comb. nov.; Deltoxenosiwatai (Esaki, 1931), comb. nov.; Deltoxenoslusitanicus (Luna de Carvalho, 1960), comb. nov.; Deltoxenosminor (Kifune & Maeta, 1978), comb. nov.; Deltoxenosrueppelli (Kinzelbach, 1971a), comb. nov.; Xenosropalidiae (Kinzelbach, 1975), comb. nov. Xenosminor Kinzelbach, 1971a, syn. nov. is recognized as a junior synonym of X.vesparum Rossi, 1793. Ophthalmochlusduryi Pierce, 1908, nomen nudum and Eupathoceralugubris Pierce, 1908, nomen nudum are recognized as nomina nuda and therefore unavailable in zoological nomenclature. The species diversity of Xenidae probably remains poorly known: the expected number of species is at least twice as high as the number presently described.

12.
Arthropod Struct Dev ; 68: 101164, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35468454

RESUMO

The distal leg structures of Zoraptera are documented and discussed with respect to their functional morphology and evolutionary aspects. We investigated eight species using scanning electron microscopy. We analyzed material compositions of the tarsus in three representative species using confocal laser scanning microscopy. When possible, we included both sexes, wing morphs, and nymphs and compared the structures among them. The distal leg structure is unusually uniform across zorapterans regardless of the sex, morphs, and developmental stages. The observed features combine simplification with innovation. The former is likely partially correlated with cryptic microhabitats and miniaturization. Innovation includes a protibial cleaning organ. This is very likely an autapomorphy of Zoraptera. The tarsi are composed of two tarsomeres covered with setae. The pretarsus distally bears an unguitractor plate and well-sclerotized claws. The tarsomeres appear less-sclerotized than the covering setae. The articulation between the basitarsus and tarsomere 2 is hinge-like, implying that tarsomere 2 moves only mediolaterally. The simplified and specialized tarsal morphology is likely suitable for the typical zorapteran microhabitat, under bark. However, the irreversible complete loss of adhesive devices prevented zorapterans to make use of a broader spectrum of environments and was presumably one reason for the species paucity of the group.


Assuntos
Neópteros , Sensilas , Animais , Evolução Biológica , Feminino , Masculino , Microscopia Eletrônica de Varredura
13.
Cladistics ; 38(2): 227-245, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35277893

RESUMO

We analyzed patterns of complexity and simplicity in holometabolan insects using parsimony and maximum-likelihood. By contrast with other groups of arthropods (and most other groups of animals), insects have undergone a stepwise process of structural simplification in their evolution. The megadiverse Holometabola are characterized mainly by structurally simplified larvae, which differ strongly from the adults in their morphology and usually also in their life habits. Although smaller groups such as Neuropterida have largely maintained their structural complexity in adults and immature life stages, a series of reductions occurred with the appearance and diversification of Coleopterida, Mecopterida and especially Antliophora. Parasitic Strepsiptera or fleas display conspicuous patterns of reduction in different life stages and body regions, and high degrees of simplification also occur in groups with short-lived adults. Larvae living in moist substrates display far-reaching structural simplifications and also morphological uniformity, especially in the species-rich Diptera, but also in other groups. Liquid feeding leads to correlated simplifications and innovation of adult head structures, especially of the mouthparts. Functional or anatomical dipterism leads to an optimization of the flight apparatus in most holometabolous groups, which is correlated with reductions in one of the pterothoracic segments, and coupled (e.g. by hamuli), partly reduced or transformed wings (e.g. halteres). In flightless groups, the pterothoracic skeleto-muscular apparatus is strongly simplified. In the abdomen of adult females a stepwise reduction of the lepismatoid ovipositor occurs. By contrast, the male genital apparatus often undergoes an extreme diversification. Our evaluations revealed a highly correlated complexity between larval and adult stages.


Assuntos
Holometábolos , Animais , Feminino , Insetos/anatomia & histologia , Larva/anatomia & histologia , Masculino , Filogenia
14.
Front Physiol ; 13: 846732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309070

RESUMO

Many herbivorous insects exploit defense compounds produced by their host plants for protection against predators. Ingested plant defense compounds are absorbed via the gut epithelium and stored in the body, a physiological process that is currently not well understood. Here, we investigated the absorption of plant defense compounds from the gut in the horseradish flea beetle, Phyllotreta armoraciae, a specialist herbivore known to selectively sequester glucosinolates from its brassicaceous host plants. Feeding experiments using a mixture of glucosinolates and other glucosides not found in the host plants showed a rapid and selective uptake of glucosinolates in adult beetles. In addition, we provide evidence that this uptake mainly takes place in the foregut, whereas the endodermal midgut is the normal region of absorption. Absorption via the foregut epithelium is surprising as the apical membrane is covered by a chitinous intima. However, we could show that this cuticular layer differs in its structure and overall thickness between P. armoraciae and a non-sequestering leaf beetle. In P. armoraciae, we observed a thinner cuticle with a less dense chitinous matrix, which might facilitate glucosinolate absorption. Our results show that a selective and rapid uptake of glucosinolates from the anterior region of the gut contributes to the selective sequestration of glucosinolates in P. armoraciae.

15.
16.
Microorganisms ; 10(2)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35208711

RESUMO

The Entomophthoromycotina, a subphylum close to the root of terrestrial fungi with a bias toward insects as their primary hosts, has been notoriously difficult to categorize taxonomically for decades. Here, we reassess the phylogeny of this group based on conserved genes encoding ribosomal RNA and RNA polymerase II subunits, confirming their general monophyly, but challenging previously assumed taxonomic relationships within and between particular clades. Furthermore, for the prominent, partially human-pathogenic taxon Conidiobolus, a new type species C. coronatus is proposed in order to compensate for the unclear, presumably lost previous type species C. utriculosus Brefeld 1884. We also performed an exhaustive survey of the broad host spectrum of the Entomophthoromycotina, which is not restricted to insects alone, and investigated potential patterns of co-evolution across their megadiverse host range. Our results suggest multiple independent origins of parasitism within this subphylum and no apparent co-evolutionary events with any particular host lineage. However, Pterygota (i.e., winged insects) clearly constitute the most dominantly parasitized superordinate host group. This appears to be in accordance with an increased dispersal capacity mediated by the radiation of the Pterygota during insect evolution, which has likely greatly facilitated the spread, infection opportunities, and evolutionary divergence of the Entomophthoromycotina as well.

17.
Cladistics ; 38(3): 335-358, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35083772

RESUMO

Pselaphinae is a large subfamily, comprising over 10 000 species of the megadiverse Staphylinidae (rove beetles). A remarkable feature of this group is the extreme structural diversity of different body regions, especially the head and its appendages. Within Pselaphinae, Clavigeritae stand out as a clade of highly specialized myrmecophiles. We examined internal and external head structures of the clavigerite species Diartiger kubotai Nomura, using state-of-the-art techniques. The cephalic morphology indicates in a phylogenetic context that the loss of eyes in some Clavigeritae was the latest of major evolutionary changes. We compiled the largest set of morphological data ever scored for the subfamily, comprising 155 characters of the head. Parsimony analyses and Bayesian inference yielded a similar phylogenetic pattern, largely congruent with results published previously. We retrieved Pselaphinae as a clade, and Faronitae as sister to all remaining groups of the subfamily. Faronitae are followed by a "Euplectitae grade" and non-monophyletic Goniaceritae, Batrisitae and Pselaphitae. Clavigeritae are monophyletic, but have evolved within the pselaphite grade. The enigmatic Colilodion Besuchet, recently shifted from Clavigeritae to a paraphyletic Pselaphitae, was placed as sister to extant clavigerites based on an array of cephalic synapomorphies. The current classification of Pselaphinae is unstable and deep changes should be made maintaining only monophyletic units, whereas most of the supertribes are paraphyletic. Characters of the head, with a concentration of mouthparts and sensory structures, and essential parts of the digestive tract and the nervous system, are highly informative phylogenetically. Study of internal structures, presently still at a very preliminary stage, obviously is essential for understanding the evolution of Pselaphinae. Future genetic investigations may reveal mechanisms behind the unique structural megadiversity in this exceptional group of rove beetles.


Assuntos
Besouros , Animais , Teorema de Bayes , Besouros/genética , Olho , Sistema Nervoso , Filogenia
19.
Cladistics ; 37(2): 211-229, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-34478185

RESUMO

Burmese amber and amber from other periods and regions became a rich source of new extinct insect species and yielded important insights in insect evolution in the dimension of time. Amber fossils have contributed to the understanding of the phylogeny, biology, and biogeography of insects and other groups, and have also gained great importance for dating molecular trees. Another major potential is the documentation of faunal, floral and climatic shifts. Evolutionary transitions can be well-documented in amber fossils and can reveal anatomical transformations and the age of appearance of structural features. Here, using a new stem group species of Strepsiptera from Burmite, we evaluate this potential of amber insect fossils to assess the current phylogeny of Strepsiptera, with the main emphasis on the early splitting events in the stem group. Amber fossils have greatly contributed to the understanding of the evolution of Strepsiptera in the late Mesozoic and the Cenozoic. †Heterobathmilla kakopoios Pohl and Beutel gen. et sp. n. described here is placed in the stem group of the order, in a clade with †Kinzelbachilla (†Kinzelbachillidae) and †Phthanoxenos (†Phthanoxenidae). †Phthanoxenidae has priority over †Kinzelbachillidae, and the latter is synonymised. The superb details available from this new fossil allowed us to explore unique features of the antennae, mouthparts, and male copulatory apparatus, and to provide a phylogenetic hypothesis for the order. The younger †Protoxenos from Eocene Baltic amber was confirmed as sister to all remaining extinct and extant groups of Strepsiptera, whereas the position of the Cretaceous †Cretostylops in the stem group remains ambivalent. While the value of Burmite and amber from other periods has a recognized impact on our knowledge of the evolution in various lineages, this new fossil does not fundamentally change our picture of the phylogeny and evolution of early Strepsiptera. However, it offers new insights into the morphological diversity in the early evolution of the group.


Assuntos
Holometábolos/anatomia & histologia , Âmbar , Animais , Evolução Biológica , Fósseis , Holometábolos/classificação , Mianmar , Filogenia
20.
J Morphol ; 282(11): 1616-1658, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34427942

RESUMO

Ants are highly polyphenic Hymenoptera, with at least three distinct adult forms in the vast majority of species. Their sexual dimorphism, however, is overlooked to the point of being a nearly forgotten phenomenon. Using a multimodal approach, we interrogate the near total head microanatomy of the male of Dorylus helvolus, the "sausagefly," and compare it with the conspecific or near-conspecific female castes, the "driver ants." We found that no specific features were shared uniquely between the workers and males to the exclusion of the queens, indicating independence of male and worker development; males and queens, however, uniquely shared several features. Certain previous generalizations about ant sexual dimorphism are confirmed, while we also discover discrete muscular presences and absences, for which reason we provide a coarse characterization of functional morphology. Based on the unexpected retention of a medial carinate line on the structurally simplified mandible of the male, we postulate a series of developmental processes to explain the patterning of ant mandibles. We invoke functional and anatomical principles to classify sensilla. Critically, we observe an inversion of the expected pattern of male-queen mandible development: male Dorylus mandibles are extremely large while queen mandibles are poorly developed. To explain this, we posit that the reproductive-limited mandible phenotype is canalized in Dorylus, thus partially decoupling the queen and worker castes. We discuss alternative hypotheses and provide further comparisons to understand mandibular evolution in army ants. Furthermore, we hypothesize that the expression of the falcate phenotype in the queen is coincidental, that is, a "spandrel," and that the form of male mandibles is also generally coincidental across the ants. We conclude that the theory of ant development and evolution is incomplete without consideration of the male system, and we call for focused study of male anatomy and morphogenesis, and of trait limitation across all castes.


Assuntos
Formigas , Animais , Feminino , Masculino , Morfogênese , Fenótipo , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...