Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Angew Chem Int Ed Engl ; : e202406126, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923075

RESUMO

Aqueous zinc batteries based on the conversion-type sulfur cathodes are promising in energy storage system due to the high theoretical energy density, low cost, and good safety. However, the multi-electron solid-state intermediate conversion reaction of sulfur cathodes generally possess sluggish kinetics, which leads to lower discharge voltage and inefficient sulfur utilization, thus suppressing the practical energy density. Herein, sulfur nanoparticles derived from metal-organic frameworks confined in-situ within electrospun fibers derived sulfur and nitrogen co-doped carbon nanofibers (S@S,N-CNF) composite, which possesses yolk-shell S@C nanostructure, is fabricated through successive sulfidation, pyrolysis, and sulfide oxidation processes, and served as a high-performance cathode material for Zn-S battery. The S and N dopants on carbon can collectively catalyse sulfur reduction reaction (SRR) by lowering energy barrier and accelerating kinetics to increase discharge voltage and specific capacity. Meanwhile, the yolk-shell S@C structure with spatially confined S nanoparticle yolks is beneficial to improve charge transfer and lower activation energy, thus further expediting SRR kinetics. Furthermore, extensive density functional theory (DFT) calculations reveal that S and N dual-doping can thermodynamically and dynamically reduce the energy barrier of rate-determining step (i.e., the transformation of *ZnS4 into *ZnS2) for the overall SRR, thereby significantly accelerating SRR kinetics.

2.
Arch Gerontol Geriatr ; 126: 105526, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38936316

RESUMO

CONTEXT: Advance care planning (ACP) is a process that helps people prepare to make decisions about their future medical care. OBJECTIVES: We sought to understand who was received billed ACP visits and measure the association with health care utilization, cost, and mortality. METHODS: We used a randomly sampled 20 % cohort of Medicare fee-for-service (FFS) beneficiaries' files to conduct a retrospective cohort study. Beneficiaries with a billed ACP visit were matched to controls using a 2-stage propensity score matching process that included assigning a pseudo-ACP visit date for controls. Outcomes included healthcare utilization, mortality, and total medical cost per month. We used descriptive statistics for univariate analysis and fit multilevel logistic regression, multilevel linear regression, or Cox regression models. RESULTS: We identified 183,513 beneficiaries who received any billed ACP visit and 550,539 matched controls. Of those who had a ACP visit, the mean age was 76.5 years and high-risk comorbidities were common: 16 % dementia, 10 % congestive heart failure, 10 % cancer. Beneficiaries who had an ACP visit had slightly more health care utilization than controls. Beneficiaries who had an ACP visit were more likely to die (3.1% vs. 1.0 %, p < 0.01, OR=3.0, 95 %CI 2.9-3.2) in the unadjusted and adjusted analyses compared to matched controls. Total monthly medical costs were 33 % higher among beneficiaries who had an ACP visit. CONCLUSION: Our results suggest that ACP visits may be preferentially utilized amongst individuals with higher risk of mortality. There may be an opportunity to increase ACP visits among older adults at lower risk for mortality. KEY MESSAGE: This article suggests that ACP visits are likely targeted to older adults with a higher risk of mortality than those at lower risk of mortality suggesting an opportunity to reach people before they are facing end-of-life decisions.

3.
Food Sci Nutr ; 12(6): 4196-4210, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38873472

RESUMO

Exposure to cigarette smoke directly damages the lungs and causes lung inflammation. The anti-inflammatory properties of edible bird's nest (EBN) have been reported. We aimed to determine the effect of EBN on pneumonia in a mouse model exposed to cigarette smoke. Fifty BALB/c mice were randomly divided into control, model, positive drug, low-dose EBN, and high-dose EBN groups (n = 10 each). Except for the control group, the mice in each group were exposed to four cigarettes once a day for 8 days. In addition, we validated the effects of EBN on A549 cells and investigated the mechanism by which EBN alleviates lung inflammation. Edible bird's nest (EBN) could alleviate the structural damage of lung tissue and the smoke-induced inflammatory response in mice. The best effect was observed at the high dose of EBN (0.019 g). The mice treated with EBN had a stronger ability than those in the model group to resist cigarette smoke stimulation, as indicated by a decrease in serum and lung inflammatory markers (interleukin 6 [IL-6], tumor necrosis factor-α [TNF-α], and interleukin 8 [IL-8]), an increase in serum interleukin 10 (IL-10) levels, and a decrease in the expression of inflammasome NOD-like receptor pyrin 3 (NLRP3). In addition, our cell experiments showed that EBN attenuated cigarette smoke-induced pulmonary inflammation mainly by inhibiting the tumor necrosis factor receptor 1 (TNFR1)/nuclear factor-kappa B (NF-κB)/NLRP3 pathway. These findings provide theoretical evidence for the positive nutritional qualities of EBN for the lung by demonstrating that it inhibits the TNFR1/NF-κB/NLRP3 signaling pathway, which prevents the development of cigarette smoke-induced pulmonary inflammation.

4.
JMIR Mhealth Uhealth ; 12: e54946, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38889070

RESUMO

Background: Hypertension, a key modifiable risk factor for cardiovascular disease, is more prevalent among Black and low-income individuals. To address this health disparity, leveraging safety-net emergency departments for scalable mobile health (mHealth) interventions, specifically using text messaging for self-measured blood pressure (SMBP) monitoring, presents a promising strategy. This study investigates patterns of engagement, associated factors, and the impact of engagement on lowering blood pressure (BP) in an underserved population. Objective: We aimed to identify patterns of engagement with prompted SMBP monitoring with feedback, factors associated with engagement, and the association of engagement with lowered BP. Methods: This is a secondary analysis of data from Reach Out, an mHealth, factorial trial among 488 hypertensive patients recruited from a safety-net emergency department in Flint, Michigan. Reach Out participants were randomized to weekly or daily text message prompts to measure their BP and text in their responses. Engagement was defined as a BP response to the prompt. The k-means clustering algorithm and visualization were used to determine the pattern of SMBP engagement by SMBP prompt frequency-weekly or daily. BP was remotely measured at 12 months. For each prompt frequency group, logistic regression models were used to assess the univariate association of demographics, access to care, and comorbidities with high engagement. We then used linear mixed-effects models to explore the association between engagement and systolic BP at 12 months, estimated using average marginal effects. Results: For both SMBP prompt groups, the optimal number of engagement clusters was 2, which we defined as high and low engagement. Of the 241 weekly participants, 189 (78.4%) were low (response rate: mean 20%, SD 23.4) engagers, and 52 (21.6%) were high (response rate: mean 86%, SD 14.7) engagers. Of the 247 daily participants, 221 (89.5%) were low engagers (response rate: mean 9%, SD 12.2), and 26 (10.5%) were high (response rate: mean 67%, SD 8.7) engagers. Among weekly participants, those who were older (>65 years of age), attended some college (vs no college), married or lived with someone, had Medicare (vs Medicaid), were under the care of a primary care doctor, and took antihypertensive medication in the last 6 months had higher odds of high engagement. Participants who lacked transportation to appointments had lower odds of high engagement. In both prompt frequency groups, participants who were high engagers had a greater decline in BP compared to low engagers. Conclusions: Participants randomized to weekly SMBP monitoring prompts responded more frequently overall and were more likely to be classed as high engagers compared to participants who received daily prompts. High engagement was associated with a larger decrease in BP. New strategies to encourage engagement are needed for participants with lower access to care.


Assuntos
Serviço Hospitalar de Emergência , Provedores de Redes de Segurança , Telemedicina , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Telemedicina/estatística & dados numéricos , Telemedicina/normas , Serviço Hospitalar de Emergência/estatística & dados numéricos , Serviço Hospitalar de Emergência/organização & administração , Provedores de Redes de Segurança/estatística & dados numéricos , Adulto , Hipertensão/terapia , Hipertensão/psicologia , Hipertensão/epidemiologia , Idoso , Michigan/epidemiologia , Envio de Mensagens de Texto/instrumentação , Envio de Mensagens de Texto/estatística & dados numéricos , Envio de Mensagens de Texto/normas , Determinação da Pressão Arterial/métodos , Determinação da Pressão Arterial/estatística & dados numéricos , Determinação da Pressão Arterial/instrumentação
5.
Front Microbiol ; 15: 1367658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737410

RESUMO

Introduction: Nitrososphaeria, formerly known as Thaumarchaeota, constitute a diverse and widespread group of ammonia-oxidizing archaea (AOA) inhabiting ubiquitously in marine and terrestrial environments, playing a pivotal role in global nitrogen cycling. Despite their importance in Earth's ecosystems, the cellular organization of AOA remains largely unexplored, leading to a significant unanswered question of how the machinery of these organisms underpins metabolic functions. Methods: In this study, we combined spherical-chromatic-aberration-corrected cryo-electron tomography (cryo-ET), scanning transmission electron microscopy (STEM), and energy dispersive X-ray spectroscopy (EDS) to unveil the cellular organization and elemental composition of Nitrosopumilus maritimus SCM1, a representative member of marine Nitrososphaeria. Results and Discussion: Our tomograms show the native ultrastructural morphology of SCM1 and one to several dense storage granules in the cytoplasm. STEM-EDS analysis identifies two types of storage granules: one type is possibly composed of polyphosphate and the other polyhydroxyalkanoate. With precise measurements using cryo-ET, we observed low quantity and density of ribosomes in SCM1 cells, which are in alignment with the documented slow growth of AOA in laboratory cultures. Collectively, these findings provide visual evidence supporting the resilience of AOA in the vast oligotrophic marine environment.

6.
Insect Sci ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38643372

RESUMO

The gut microbiome is a key partner of animals, influencing various aspects of their physiology and behaviors. Among the diverse behaviors regulated by the gut microbiome, locomotion is vital for survival and reproduction, although the underlying mechanisms remain unclear. Here, we reveal that the gut microbiome modulates the locomotor behavior of Drosophila larvae via a specific neuronal type in the brain. The crawling speed of germ-free (GF) larvae was significantly reduced compared to the conventionally reared larvae, while feeding and excretion behaviors were unaffected. Recolonization with Acetobacter and Lactobacillus can fully and partially rescue the locomotor defects in GF larvae, respectively, probably due to the highest abundance of Acetobacter as a symbiotic bacterium in the larval gut, followed by Lactobacillus. Moreover, the gut microbiome promoted larval locomotion, not by nutrition, but rather by enhancing the brain levels of tyrosine decarboxylase 2 (Tdc2), which is an enzyme that synthesizes octopamine (OA). Overexpression of Tdc2 rescued locomotion ability in GF larvae. These findings together demonstrate that the gut microbiome specifically modulates larval locomotor behavior through the OA signaling pathway, revealing a new mechanism underlying larval locomotion regulated by the gut microbiome.

7.
Opt Lett ; 49(7): 1757-1760, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38560855

RESUMO

High-precision IFOG requires an optical sensitivity of up to 10-8 rads-1 for interferometers; noise and error are two of the main reasons limiting its accuracy improvement. Any potential source of the signal error is worth being studied. This article introduces work on the modulation signal error caused by the mechanical vibration energy loss of MIOC crystals. This article theoretically derives and simulates the frequency spectrum of an energy loss from the perspective of electromechanical coupling and verifies it through experiments. This article also verifies the influence of MIOC mechanical loss on the output of a Sagnac interferometer through experiments. This study is an indispensable part of the bottleneck for improving the accuracy of ultrahigh-precision closed-loop IFOG and has potential engineering application value.

8.
Biosensors (Basel) ; 14(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38667153

RESUMO

Harmful algal blooms (HABs) pose a global threat to the biodiversity and stability of local aquatic ecosystems. Rapid and accurate classification of microalgae and cyanobacteria in water is increasingly desired for monitoring complex water environments. In this paper, we propose a pulse feature-enhanced classification (PFEC) method as a potential solution. Equipped with a rapid measurement prototype that simultaneously detects polarized light scattering and fluorescence signals of individual particles, PFEC allows for the extraction of 38 pulse features to improve the classification accuracy of microalgae, cyanobacteria, and other suspended particulate matter (SPM) to 89.03%. Compared with microscopic observation, PFEC reveals three phyla proportions in aquaculture samples with an average error of less than 14%. In this paper, PFEC is found to be more accurate than the pulse-average classification method, which is interpreted as pulse features carrying more detailed information about particles. The high consistency of the dominant and common species between PFEC and microscopy in all field samples also demonstrates the flexibility and robustness of the former. Moreover, the high Pearson correlation coefficient accounting for 0.958 between the cyanobacterial proportion obtained by PFEC and the cyanobacterial density given by microscopy implies that PFEC serves as a promising early warning tool for cyanobacterial blooms. The results of this work suggest that PFEC holds great potential for the rapid and accurate classification of microalgae and cyanobacteria in aquatic environment monitoring.


Assuntos
Cianobactérias , Microalgas , Fluorescência , Luz , Proliferação Nociva de Algas , Monitoramento Ambiental/métodos
9.
Nutrients ; 16(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474792

RESUMO

Colostrum basic protein (CBP) is a trace protein extracted from bovine colostrum. Previous studies have shown that CBP can promote bone cell differentiation and increase bone density. However, the mechanism by which CBP promotes bone activity remains unclear. This study investigated the mechanism of the effect of CBP on bone growth in mice following dietary supplementation of CBP at doses that included 0.015%, 0.15%, 1.5%, and 5%. Compared with mice fed a normal diet, feeding 5% CBP significantly enhanced bone rigidity and improved the microstructure of bone trabeculae. Five-percent CBP intake triggered significant positive regulation of calcium metabolism in the direction of bone calcium accumulation. The expression levels of paracellular calcium transport proteins CLDN2 and CLDN12 were upregulated nearly 1.5-fold by 5% CBP. We conclude that CBP promotes calcium absorption in mice by upregulating the expression of the calcium-transporting paracellular proteins CLND2 and CLND12, thereby increasing bone density and promoting bone growth. Overall, CBP contributes to bone growth by affecting calcium metabolism.


Assuntos
Cálcio , Colostro , Gravidez , Feminino , Animais , Camundongos , Bovinos , Cálcio/metabolismo , Colostro/metabolismo , Cálcio da Dieta/metabolismo , Osso e Ossos/metabolismo , Desenvolvimento Ósseo , Densidade Óssea , Proteínas Alimentares/farmacologia
10.
ACS Nano ; 18(11): 7959-7971, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501309

RESUMO

The methods used to date to produce compressible wood foam by top-down approaches generally involve the removal of lignin and hemicelluloses. Herein, we introduce a route to convert solid wood into a super elastic and insulative foam-like material. The process uses sequential oxidation and reduction with partial removal of lignin but high hemicellulose retention (process yield of 72.8%), revealing fibril nanostructures from the wood's cell walls. The elasticity of the material is shown to result from a lamellar structure, which provides reversible shape recovery along the transverse direction at compression strains of up to 60% with no significant axial deformation. The compressibility is readily modulated by the oxidation degree, which changes the crystallinity and mobility of the solid phase around the lumina. The performance of the highly resilient foam-like material is also ascribed to the amorphization of cellulosic fibrils, confirmed by experimental and computational (molecular dynamics) methods that highlight the role of secondary interactions. The foam-like wood is optionally hydrophobized by chemical vapor deposition of short-chained organosilanes, which also provides flame retardancy. Overall, we introduce a foam-like material derived from wood based on multifunctional nanostructures (anisotropically compressible, thermally insulative, hydrophobic, and flame retardant) that are relevant to cushioning, protection, and packaging.

11.
ACS Appl Mater Interfaces ; 16(10): 12897-12906, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38412379

RESUMO

The "von Neumann bottleneck" is a formidable challenge in conventional computing, driving exploration into artificial synapses. Organic semiconductor materials show promise but are hindered by issues such as poor adhesion and a high elastic modulus. Here, we combine polyisoindigo-bithiophene (PIID-2T) with grafted poly(dimethylsiloxane) (PDMS) to synthesize the triblock-conjugated polymer (PIID-2T-PDMS). The polymer exhibited substantial enhancements in adhesion (4.8-68.8 nN) and reductions in elastic modulus (1.6-0.58 GPa) while maintaining the electrical characteristics of PIID-2T. The three-terminal organic synaptic transistor (three-terminal p-type organic artificial synapse (TPOAS)), constructed using PIID-2T-PDMS, exhibits an unprecedented analog switching range of 276×, surpassing previous records, and a remarkable memory on-off ratio of 106. Moreover, the device displays outstanding operational stability, retaining 99.6% of its original current after 1600 write-read events in the air. Notably, TPOAS replicates key biological synaptic behaviors, including paired-pulse facilitation (PPF), short-term plasticity (STP), and long-term plasticity (LTP). Simulations using handwritten digital data sets reveal an impressive recognition accuracy of 91.7%. This study presents a polyisoindigo-bithiophene-based block copolymer that offers enhanced adhesion, reduced elastic modulus, and high-performance artificial synapses, paving the way for the next generation of neuromorphic computing systems.

12.
Food Funct ; 15(2): 866-880, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38165790

RESUMO

The immune system of infants is partly weak and immature, and supplementation of infant formula can be of vital importance to boost the development of the immune system. Lactoferrin (LF) and osteopontin (OPN) are essential proteins in human milk with immunoregulation function. An increasing number of studies indicate that proteins have interactions with each other in milk, and our previous study found that a ratio of LF : OPN at 1 : 5 (w/w, denoted as LOP) had a synergistic effect on intestinal barrier protection. It remains unknown whether LOP can also exert a stronger effect on immunoregulation. Hence, we used an in vitro model of LPS-induced macrophage inflammation and in vivo models of LPS-induced intestinal inflammation and early life development. We showed that LOP increased the secretion of the granulocyte-macrophage colony-stimulating factor (132%), stem cell factor (167%) and interleukin-3 (176%) in bone marrow cells, as well as thymosin (155%) and interleukin-10 (161%) in the thymus, more than LF or OPN alone during development, and inhibited changes in immune cells and cytokines during the LPS challenge. In addition, analysis of the components of digested proteins in vitro revealed that differentially expressed peptides may provide immunoregulation. Lastly, LOP increased the abundance of Rikenellaceae, Muribaculum, Faecalibaculum, and Elisenbergiella in the cecum content. These results imply that LOP is a potential immunomodifier for infants and offers a new theoretical basis for infant formula innovation.


Assuntos
Lactoferrina , Osteopontina , Lactente , Humanos , Lactoferrina/química , Osteopontina/genética , Osteopontina/metabolismo , Lipopolissacarídeos/metabolismo , Leite Humano/química , Inflamação/metabolismo , Sistema Imunitário/metabolismo
13.
Small ; 20(16): e2307627, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38063849

RESUMO

The high freezing point of polybromides, charging products, is a significant obstacle to the rapid development of zinc-bromine flow batteries (Zn-Br2 FBs). Here, a choline-based complexing agent (CCA) is constructed to liquefy the polybromides at low temperatures. Depending on quaternary ammonium group, choline can effectively complex with polybromide anions and form dense oil-phase that has excellent antifreezing property. Benefiting from indispensable strong ion-ion interaction, the highly selectively compatible CCA, consisting of choline and N-methyl-N-ethyl-morpholinium salts (CCA-M), can be achieved to further enhance bromine fixing ability. Interestingly, the formed polybromides with CCA-M are able to keep liquid even at -40 °C. The CCA-M endows Zn-Br2 FBs at 40 mA cm-2 with unprecedented long cycle life (over 150 cycles) and high Coulombic efficiency (CE, average ≈98.8%) at -20 °C, but also at room temperature (over 1200 cycles, average CE: ≈94.7%). The CCA shows a promising prospect of application and should be extended to other antifreezing bromine-based energy storage systems.

14.
Circulation ; 149(5): 354-362, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-37850379

RESUMO

BACKGROUND: Homozygous familial hypercholesterolemia is a genetic disease characterized by extremely high levels of low-density lipoprotein cholesterol (LDL-C) and a high risk of premature cardiovascular events. The proof-of-concept study ORION-2 (A Study of Inclisiran in Participants With Homozygous Familial Hypercholesterolemia) showed that inclisiran, a small interfering RNA that prevents production of the hepatic PCSK9 protein (proprotein convertase subtilisin/kexin type 9), could lead to durable reductions in LDL-C levels when added to statins and ezetimibe in patients with homozygous familial hypercholesterolemia. METHODS: ORION-5 was a phase 3, 2-part, multicenter study in 56 patients with homozygous familial hypercholesterolemia and elevated LDL-C levels despite maximum tolerated doses of LDL-C-lowering therapies with or without lipoprotein apheresis. Patients eligible for part 1 (double-blind, 6 months) were randomized 2:1 to receive either 300 mg of inclisiran sodium (equivalent to 284 mg of inclisiran) or placebo. Placebo-treated patients from part 1 were transitioned to inclisiran in part 2 (open-label, 18 months). The primary end point was the percentage change in LDL-C levels from baseline to day 150. RESULTS: The mean age of the patients was 42.7 years, and 60.7% were women. The mean baseline LDL-C levels were 294.0 mg/dL and 356.7 mg/dL in the inclisiran and placebo groups, respectively. The placebo-corrected percentage change in LDL-C level from baseline to day 150 was -1.68% (95% CI, -29.19% to 25.83%; P=0.90), and the difference was not statistically significant between the inclisiran and placebo groups. The placebo-corrected percentage change in PCSK9 levels from baseline to day 150 was -60.6% with inclisiran treatment (P<0.0001); this was sustained throughout the study, confirming the effect of inclisiran on its biological target of PCSK9. No statistically significant differences between the inclisiran and placebo groups were observed in the levels of other lipids and lipoproteins (apolipoprotein B, total cholesterol, and non-high-density lipoprotein cholesterol). Adverse events and serious adverse events did not differ between the inclisiran and placebo groups throughout the study. CONCLUSIONS: Inclisiran treatment did not reduce LDL-C levels in patients with homozygous familial hypercholesterolemia despite substantial lowering of PCSK9 levels. Inclisiran was well-tolerated, and the safety findings were consistent with previously reported studies and the overall safety profile. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03851705.


Assuntos
Anticolesterolemiantes , Hipercolesterolemia Familiar Homozigota , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Feminino , Adulto , Masculino , Pró-Proteína Convertase 9/metabolismo , LDL-Colesterol , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , RNA Interferente Pequeno/efeitos adversos , Colesterol , Anticolesterolemiantes/efeitos adversos
15.
Small ; 20(5): e2306646, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37759391

RESUMO

Resolution control and expansibility have always been challenges to the fabrication of structural color materials. Here, a facile strategy to print cholesteric liquid crystal elastomers (CLCEs) into complex structural color patterns with variable resolution and enhanced expansibility is reported. A volatile solvent is introduced into the synthesized CLC oligomers, modifying its rheological properties and allowing direct-ink-writing (DIW) under mild conditions. The combination of printing shear flow and anisotropic deswelling of ink drives the CLC molecules into an ordered cholesteric arrangement. The authors meticulously investigate the influence of printing parameters to achieve resolution control over a wide range, allowing for the printing of multi-sized 1D or 2D patterns with constant quality. Furthermore, such solvent-cast direct-ink-writing (DIW) strategy is highly expandable and can be integrated easily into the DIW of bionic robots. Multi-responsive bionic butterfly and flower are printed with biomimetic in both locomotion and coloration. Such designs dramatically reduced the processing difficulty of precise full-color printing and expanded the capability of structural color materials to collaborate with other systems.

17.
Ecotoxicol Environ Saf ; 268: 115673, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979358

RESUMO

Micro- and nano-plastics (MNPs) are increasingly prevalent contaminants in marine ecosystems and have a variety of negative impacts on marine organisms. While their toxic impact on freshwater microalgae has been well-documented, limited research has been conducted on the influence of MNPs on marine red tide algae, despite their significant implications for human health and coastal ecological stability. This study investigated the physiological, biochemical and molecular reactions of the common harmful algal species, Heterosigma akashiwo, when exposed to polystyrene (PS) MNPs of 80 nm and 1 µm in size with the concentrations of 0, 1, 10, and 20 mg L-1 in 12 days. The results showed that 80 nm-sized MNPs (at concentrations of 10 mg L-1 and 20 mg L-1) inhibited algal growth. Despite the increased superoxide dismutase (SOD) activity and up-regulation of glutathione metabolism, exposure-induced oxidative stress remained the main cause of the inhibition. Up-regulation of aminoacyl-tRNA biosynthesis and amino acid biosynthesis pathways provide the necessary amino acid feedstock for the synthesis of antioxidant enzymes such as SOD. 1 µm sized PS MNPs increased chlorophyll a (Chl-a) content without significant effects on other parameters. In addition, H. akashiwo have an effective self-regulation ability to defend against two sized MNPs stress at concentrations of 1 mg L-1 by upregulating gene expression related to endocytosis, biotin metabolism, and oxidative phosphorylation. These results provided evidence that H. akashiwo was able to resist exposure to 1 µm MPs, whereas 80 nm NPs exerted a toxic effect on H. akashiwo. This study deepens our understanding of the interaction between MNPs and marine harmful algal at the transcriptional level, providing valuable insights for further evaluating the potential impact of PS MNPs on harmful algal blooms in marine ecosystems.


Assuntos
Dinoflagellida , Estramenópilas , Humanos , Microplásticos , Plásticos , Ecossistema , Clorofila A , Estramenópilas/genética , Poliestirenos , Aminoácidos , Superóxido Dismutase
18.
Environ Sci Pollut Res Int ; 30(53): 114327-114335, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37861847

RESUMO

The spent carbon cathode (SCC) is a hazardous solid waste from aluminum production. It has an abundant carbon source and a unique graphitic carbon layer structure, making it a valuable waste for recycling. This paper uses alkaline and acid leaching methods to report a straightforward way of extracting recovered carbon (RC) from SCC as anode material for lithium-ion batteries (LIBs). The results show that alkaline and acid leaching conditions at 70 °C with 1 M NaOH and HCl solution individually in 6 h and a liquid-solid ratio of 20:1 can result in RC with up to 94.63% carbon content than 49.38% in SCC, exhibiting a typical graphite structure. SCC and RC materials are obtained after calcination at 400 °C in an inert atmosphere and used as anode materials (SCC-400 and RC-400). In this paper, The initial charging specific capacities are 490.0 mA h g-1, 195.4 mA h g-1, and 423.2 mA h g-1and initial coulombic efficiencies (ICE) are 67.8%, 78.9%, and 72.0% of RC-400, SCC, and SCC-400. RC-400 also shows excellent capacity retention and impedance values. This exciting finding provides a viable, non-hazardous, and resourceful method for treating and disposing of SCC from aluminum electrolysis.


Assuntos
Grafite , Lítio , Lítio/química , Alumínio , Carbono , Fontes de Energia Elétrica , Eletrodos , Reciclagem
19.
Ying Yong Sheng Tai Xue Bao ; 34(8): 2047-2054, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37681368

RESUMO

To clarify the effects of target tree management on natural forest regeneration, with Pinus massoniana plantations in the low mountainous regions of eastern Sichuan with target tree densities of 100, 150 and 200 trees·hm-2 as test object, we analyzed the effects of management densities on canopy structure, plant diversity, and soil physicochemical properties on understory regeneration. The results showed that the regeneration index increased with management density, which increased 0.08-0.10 in the managed plantations compared with unmanaged sites. When the density of the target trees was 150 trees·hm-2, an increase of 9 regeneration tree species and an increase of 800 trees·hm-2 in quantity were observed. The dominance of herbaceous species was not prominent, but canopy structure was improved, and the regeneration ability of understory plants was enhanced. The impact of habitat factors on the regeneration index ranked as soil total porosity (0.591) > leaf area index (-0.536) > Shannon index (-0.085) > available P (0.053) > total N (-0.007) > Pielou index (-0.005). Target tree management facilitated understory regeneration in the P. massoniana plantations by improving soil pore conditions, reducing leaf area index, and decreasing herbaceous plant diversity index. A management density of 150 trees·hm-2 was more sui-table for target tree management in P. massoniana plantations.


Assuntos
Pinus , Árvores , Florestas , Folhas de Planta , Solo
20.
ACS Appl Mater Interfaces ; 15(35): 41656-41665, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37610705

RESUMO

Organic electrochemical transistors (OECTs) for skin-like bioelectronics require mechanical stretchability, softness, and cost-effective large-scale manufacturing. However, developing intrinsically stretchable OECTs using a simple and fast-response technique is challenging due to limitations in functional materials, substrate wettability, and integrated processing of multiple materials. In this regard, we propose a fabrication method devised by combining the preparation of a microstructured hydrophilic substrate, multi-material printing of functional inks with varying viscosities, and optimization of the device channel geometries. The resulting intrinsically stretchable OECT array with synaptic properties was successfully manufactured. These devices demonstrated high transconductance (22.5 mS), excellent mechanical softness (Young's modulus ∼ 2.2 MPa), and stretchability (∼30%). Notably, the device also exhibited artificial synapse functionality, mimicking the biological synapse with features such as paired-pulse depression, short-term plasticity, and long-term plasticity. This study showcases a promising strategy for fabricating intrinsically stretchable OECTs and provides valuable insights for the development of brain-computer interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...