Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
1.
World J Clin Oncol ; 15(5): 635-643, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38835847

RESUMO

BACKGROUND: Although treatment options for gastric cancer (GC) continue to advance, the overall prognosis for patients with GC remains poor. At present, the predictors of treatment efficacy remain controversial except for high microsatellite instability. AIM: To develop methods to identify groups of patients with GC who would benefit the most from receiving the combination of a programmed cell death protein 1 (PD-1) inhibitor and chemotherapy. METHODS: We acquired data from 63 patients with human epidermal growth factor receptor 2 (HER2)-negative GC with a histological diagnosis of GC at the Cancer Hospital, Chinese Academy of Medical Sciences between November 2020 and October 2022. All of the patients screened received a PD-1 inhibitor combined with chemotherapy as the first-line treatment. RESULTS: As of July 1, 2023, the objective response rate was 61.9%, and the disease control rate was 96.8%. The median progression-free survival (mPFS) for all patients was 6.3 months. The median overall survival was not achieved. Survival analysis showed that patients with a combined positive score (CPS) ≥ 1 exhibited an extended trend in progression-free survival (PFS) when compared to patients with a CPS of 0 after receiving a PD-1 inhibitor combined with oxaliplatin and tegafur as the first-line treatment. PFS exhibited a trend for prolongation as the expression level of HER2 increased. Based on PFS, we divided patients into two groups: A treatment group with excellent efficacy and a treatment group with poor efficacy. The mPFS of the excellent efficacy group was 8 months, with a mPFS of 9.1 months after excluding a cohort of patients who received interrupted therapy due to surgery. The mPFS was 4.5 months in patients in the group with poor efficacy who did not receive surgery. Using good/poor efficacy as the endpoint of our study, univariate analysis revealed that both CPS score (P = 0.004) and HER2 expression level (P = 0.015) were both factors that exerted significant influence on the efficacy of treatment the combination of a PD-1 inhibitor and chemotherapy in patients with advanced GC (AGC). Finally, multivariate analysis confirmed that CPS score was a significant influencing factor. CONCLUSION: CPS score and HER2 expression both impacted the efficacy of immunotherapy combined with chemotherapy in AGC patients who were non-positive for HER2.

2.
Front Plant Sci ; 15: 1404477, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835857

RESUMO

Abscisic acid (ABA) is a key phytohormone involved in wound healing in fruits and vegetables, while fluridone (FLD) is its synthetic inhibitor. However, it is unknown whether ABA signaling and downstream transcription factors are involved in the synthesis of phenolic acids and lignin monomers in muskmelon wounds, and the underlying mechanisms. In our study, exogenous ABA promoted endogenous ABA synthesis by increasing the levels of ß-carotenoid and zeaxanthin, activating 9-cis-epoxycarotenoid dioxygenase (NCED) and zeaxanthin epoxidase (ZEP), facilitated ABA signaling by increasing the expression levels of protein phosphatases type 2C (CmPP2C) and ABA-responsive element binding factors (CmABF), upregulated the expression levels of CmMYB1 and CmWRKY1, and ABA induced phenylpropanoid metabolism by activating phenylalanine ammonia-lyase (PAL), 4-coenzyme A ligase (4CL), and cinnamyl alcohol dehydrogenase (CAD), which further increased the synthesis of phenolic acids and lignin monomers in muskmelon wounds during healing. Taken together, exogenous ABA induced phenylpropanoid metabolism and increased the synthesis of phenolic acid and lignin monomer in muskmelon wounds during healing, and may be involved in endogenous ABA synthesis and signaling and related transcription factors.

3.
Compr Rev Food Sci Food Saf ; 23(4): e13397, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38924311

RESUMO

Fungal infections of fresh fruits and vegetables (FFVs) can lead to safety problems, including consumer poisoning by mycotoxins. Various strategies exist to control fungal infections of FFVs, but their effectiveness and sustainability are limited. Recently, new concepts based on the microbiome and pathobiome have emerged and offer a more holistic perspective for advancing postharvest pathogen control techniques. Understanding the role of the microbiome in FFV infections is essential for developing sustainable control strategies. This review examines current and emerging approaches to postharvest pathology. It reviews what is known about the initiation and development of infections in FFVs. As a promising concept, the pathobiome offers new insights into the basic mechanisms of microbial infections in FFVs. The underlying mechanisms uncovered by the pathobiome are being used to develop more relevant global antifungal strategies. This review will also focus on new technologies developed to target the microbiome and members of the pathobiome to control infections in FFVs and improve safety by limiting mycotoxin contamination. Specifically, this review stresses emerging technologies related to FFVs that are relevant for modifying the interaction between FFVs and the microbiome and include the use of microbial consortia, the use of genomic technology to manipulate host and microbial community genes, and the use of databases, deep learning, and artificial intelligence to identify pathobiome markers. Other approaches include programming the behavior of FFVs using synthetic biology, modifying the microbiome using sRNA technology, phages, quorum sensing, and quorum quenching strategies. Rapid adoption and commercialization of these technologies are recommended to further improve the overall safety of FFVs.


Assuntos
Frutas , Verduras , Frutas/microbiologia , Verduras/microbiologia , Fungos , Microbiota , Antifúngicos/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Micotoxinas
4.
Food Chem ; 457: 140194, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38924917

RESUMO

Phenylalanine (Phe) accelerates fruit wound healing by activating phenylpropanoid metabolism. However, whether Phe affects sucrose and respiratory metabolism in fruit during wound healing remains unknown. In this research, we found that preharvest Phe spray promoted sucrose degradation and increased glucose and fructose levels by activating acid invertase (AI), neutral invertase (NI), sucrose synthase (SS) and sucrose phosphate synthase (SPS) on harvested muskmelons. The spray also activated hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), malate dehydrogenase (MDH), succinate dehydrogenase (SDH) and glucose-6-phosphate dehydrogenase (G6PDH). In addition, the spray improved energy and reducing power levels in the fruit. Taken together, preharvest Phe spray can provide carbon skeleton, energy and reducing power for wound healing by activating the sucrose metabolism, Embden-Meyerhof-Parnas (EMP) pathway, tricarboxylic acid (TCA) cycle and pentose phosphate (PPP) pathway in muskmelon wounds during healing, which is expected to be developed as a new strategy to accelerate fruit wound healing.

5.
Nat Commun ; 15(1): 4919, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858346

RESUMO

Chiral 1,2,3-triazoles are highly attractive motifs in various fields. However, achieving catalytic asymmetric click reactions of azides and alkynes for chiral triazole synthesis remains a significant challenge, mainly due to the limited catalytic systems and substrate scope. Herein, we report an enantioselective azidation/click cascade reaction of N-propargyl-ß-ketoamides with a readily available and potent azido transfer reagent via copper catalysis, which affords a variety of chiral 1,2,3-triazoles with up to 99% yield and 95% ee under mild conditions. Notably, chiral 1,5-disubstituted triazoles that have not been accessed by previous asymmetric click reactions are also prepared with good functional group tolerance.

6.
Dev Biol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878992

RESUMO

Anorectal malformation (ARM) is the most common congenital digestive tract anomaly in newborns, and children with ARM often have varying degrees of underdevelopment of the pelvic floor muscles (PFMs). To explore the effects of RARα and Pitx2 on the development of rat PFMs, we constructed a rat ARM animal model using all-trans retinoic acid (ATRA), and verified the expression of RARα and Pitx2 in the PFMs of fetal rats. Additionally, we used rat myoblasts (L6 cells) to investigate the regulatory roles of RARα and Pitx2 in skeletal muscle myoblast differentiation and their interactions. The results indicated a significant decrease in the expression of RARα and Pitx2 in the PFMs of fetal rats with ARM. ATRA can also decrease the expression of RARα and Pitx2 in the L6 cells, while affecting the differentiation and fusion of L6 cells. Knocking down RARα in L6 cells reduced the expression of Pitx2, MYOD1, MYMK, and decreased myogenic activity in L6 cells. When RARα is activated, the decreased expression of Pitx2, MYOD1, and MYMK and myogenic differentiation can be restored to different extents. At the same time, increasing or inhibiting the expression of Pitx2 can counteract the effects of knocking down RARα and activating RARα respectively. These results indicate that Pitx2 may be downstream of the transcription factor RARα, mediating the effects of ATRA on the development of fetal rat PFMs.

7.
Food Chem ; 458: 140210, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38943948

RESUMO

Food products are susceptible to mold contamination, releasing moldy odors. These moldy odors not only affect the flavor of food, but also pose a risk to human health. Moldy odors are a mixture of volatile organic compounds (VOCs) released by the fungi themselves, which are the main source of moldy odors in moldy foods. These VOCs are secondary metabolites of fungi and are synthesized through various biosynthetic pathways. Both the fungi themselves and environmental factors affect the release of moldy odors. This review summarized the main components of musty odors in moldy foods and their producing fungi. In addition, this review focused on the functions of moldy volatile organic compounds (MVOCs) and the biosynthetic pathways of the major MVOCs, and summarized the factors affecting the release of MVOCs as well as the detection methods. It expected to provide a basis for ensuring food safety.

8.
Food Chem X ; 22: 101372, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38699586

RESUMO

Pulsed electric field (PEF) is an innovative technique used to assist in the extraction of vegetable oils. There has been no research on the effects of PEF on virgin olive oil (VOO) quality and antioxidant activity to date. The present study aimed to analyze the effects of PEF on oil yield, quality, and in vitro antioxidant activity of "Koroneiki" extra virgin olive oil. The results show that the PEF treatment increased the oil yield by 5.6%, but had no significant effect on the saponification value, K232, K270, and ∆K value of the VOO. PEF treatment reduced the oleic acid content by 3.12%, but had no significant effect on the content of palmitic acid, linoleic acid, linolenic acid, arachidonic acid, stearic acid, oleic acid, and palmitic acid. After PEF treatment, the levels of total phenolics, total flavonoids, and oleuropein increased by 7.6%, 18.3% and 76%, respectively. There was no significant effect on the levels of 4 phenolic acids (vanillic acid, p-coumaric acid, ferulic acid and cinnamic acid), 2 lignans (lignans and apigenin), hydroxytyrosol, and 3 pigments (lutein, demagnetized chlorophyll, and carotenoids). In addition, PEF treatment significantly increased the content of tocopherols, with α, ß, γ, and δ tocopherols increasing by 9.8%, 10.7%, 13.6% and 38.4%, respectively. The free radical scavenging ability of DPPH and ABTS was also improved. In conclusion, the use of PEF significantly increased the yield of VOO oil as well as the levels of total phenolics, total flavonoids, oleuropein, tocopherol, and in vitro antioxidant activity.

9.
Foods ; 13(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38790842

RESUMO

Exploring the green and affordable protection of perishable cherry tomato fruits during storage, herein, the protective efficacy, and its underpinning mechanisms, of a coating of oleaster gum, alone or incorporated with cuminal, on cherry tomatoes stored at ambient temperature was investigated. The composite coating of oleaster gum with 0.1% cuminal reduced the decay, respiration rate, weight loss, and softening of the fruits and decelerated the decreases in their total soluble solid, titratable acidity, and soluble protein levels, and therefore maintained their marketability. Furthermore, it reduced the accumulation of O2·- and H2O2 in the fruits and mitigated cell membrane lipid oxidation and permeabilization, thereby retarding their senescence. Instrumentally, it elevated the activities of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase and the levels of ascorbic acid and glutathione. This potentiation of the fruits' antioxidant system makes this composite coating a promising approach to keeping the postharvest quality of perishable fruits.

10.
Plant J ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776519

RESUMO

The essence of wound healing is the accumulation of suberin at wounds, which is formed by suberin polyphenolic (SPP) and suberin polyaliphatic (SPA). The biosynthesis of SPP and SPA monomers is catalyzed by several enzyme classes related to phenylpropanoid metabolism and fatty acid metabolism, respectively. However, how suberin biosynthesis is regulated at the transcriptional level during potato (Solanum tuberosum) tuber wound healing remains largely unknown. Here, 6 target genes and 15 transcription factors related to suberin biosynthesis in tuber wound healing were identified by RNA-seq technology and qRT-PCR. Dual luciferase and yeast one-hybrid assays showed that StMYB168 activated the target genes StPAL, StOMT, and St4CL in phenylpropanoid metabolism. Meanwhile, StMYB24 and StMYB144 activated the target genes StLTP, StLACS, and StCYP in fatty acid metabolism, and StFHT involved in the assembly of SPP and SPA domains in both native and wound periderms. More importantly, virus-induced gene silencing in S. tuberosum and transient overexpression in Nicotiana benthamiana assays confirmed that StMYB168 regulates the biosynthesis of free phenolic acids, such as ferulic acid. Furthermore, StMYB24/144 regulated the accumulation of suberin monomers, such as ferulates, α, ω-diacids, and ω-hydroxy acids. In conclusion, StMYB24, StMYB144, and StMYB168 have an elaborate division of labor in regulating the synthesis of suberin during tuber wound healing.

11.
Food Microbiol ; 121: 104496, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637067

RESUMO

Phospholipase D plays a critical regulatory role in the pathogenicity of filamentous fungi. However, the molecular mechanism of PLD regulating the pathogenicity of filamentous fungi has not been reported. In this research, the previously constructed TrPLD1 and TrPLD2 (TrPLDs) mutants were used as test strains. Firstly, the function of TrPLDs in Trichothecium roseum was studied. Then, the effects of TrPLDs on the pathogenicity of T. roseum and the quality of the inoculated apples were verified. The results suggested that the deletion of TrPLD1 delayed the spore germination of ΔTrPLD1 and inhibited germ tube elongation by down-regulating the expressions of TrbrlA, TrabaA and TrwetA. By down-regulating the extracellular enzyme-coding gene expressions, ΔTrPLD1 inhibited the degradation of apple fruit cell wall and the change of fatty acid content during infection, reduced the cell membrane permeability and malondialdehyde (MDA) content of apple fruit, thereby maintaining the integrity of fruit cell membrane, and reduced the pathogenicity of ΔTrPLD1 to apple and kept the quality of apple. However, ΔTrPLD2 did not have a significant effect on the infection process of apple fruit by the pathogen.


Assuntos
Hypocreales , Malus , Malus/microbiologia , Frutas/microbiologia , Virulência/genética
12.
Comput Struct Biotechnol J ; 23: 1594-1607, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38680872

RESUMO

The high-osmolarity-sensitive protein Sho1 functions as a key membrane receptor in phytopathogenic fungi, which can sense and respond to external stimuli or stresses, and synergistically regulate diverse fungal biological processes through cellular signaling pathways. In this study, we investigated the biological functions of AaSho1 in Alternaria alternata, the causal agent of pear black spot. Targeted gene deletion revealed that AaSho1 is essential for infection structure differentiation, response to external stresses and synthesis of secondary metabolites. Compared to the wild-type (WT), the ∆AaSho1 mutant strain showed no significant difference in colony growth, morphology, conidial production and biomass accumulation. However, the mutant strain exhibited significantly reduced levels of melanin production, cellulase (CL) and ploygalacturonase (PG) activities, virulence, resistance to various exogenous stresses. Moreover, the appressorium and infection hyphae formation rates of the ∆AaSho1 mutant strain were significantly inhibited. RNA-Seq results showed that there were four branches including pheromone, cell wall stress, high osmolarity and starvation in the Mitogen-activated Protein Kinase (MAPK) cascade pathway. Furthermore, yeast two-hybrid experiments showed that AaSho1 activates the MAPK pathway via AaSte11-AaPbs2-AaHog1. These results suggest that AaSho1 of A. alternata is essential for fungal development, pathogenesis and osmotic stress response by activating the MAPK cascade pathway via Sho1-Ste11-Pbs2-Hog1.

13.
World J Gastroenterol ; 30(12): 1739-1750, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38617739

RESUMO

BACKGROUND: The incidence of patients with early-onset pancreatic cancer (EOPC; age ≤ 50 years at diagnosis) is on the rise, placing a heavy burden on individuals, families, and society. The role of combination therapy including surgery, radiotherapy, and chemotherapy in non-metastatic EOPC is not well-defined. AIM: To investigate the treatment patterns and survival outcomes in patients with non-metastatic EOPC. METHODS: A total of 277 patients with non-metastatic EOPC who were treated at our institution between 2017 and 2021 were investigated retrospectively. Overall survival (OS), disease-free survival, and progression-free survival were estimated using the Kaplan-Meier method. Univariate and multivariate analyses with the Cox proportional hazards model were used to identify prognostic factors. RESULTS: With a median follow-up time of 34.6 months, the 1-year, 2-year, and 3-year OS rates for the entire cohort were 84.3%, 51.5%, and 27.6%, respectively. The median OS of patients with localized disease who received surgery alone and adjuvant therapy (AT) were 21.2 months and 28.8 months, respectively (P = 0.007). The median OS of patients with locally advanced disease who received radiotherapy-based combination therapy (RCT), surgery after neoadjuvant therapy (NAT), and chemotherapy were 28.5 months, 25.6 months, and 14.0 months, respectively (P = 0.002). The median OS after regional recurrence were 16.0 months, 13.4 months, and 8.9 months in the RCT, chemotherapy, and supportive therapy groups, respectively (P = 0.035). Multivariate analysis demonstrated that carbohydrate antigen 19-9 level, pathological grade, T-stage, N-stage, and resection were independent prognostic factors for non-metastatic EOPC. CONCLUSION: AT improves postoperative survival in localized patients. Surgery after NAT and RCT are the preferred therapeutic options for patients with locally advanced EOPC.


Assuntos
Antígeno CA-19-9 , Neoplasias Pancreáticas , Humanos , Pessoa de Meia-Idade , Terapia Combinada , Intervalo Livre de Doença , Análise Multivariada , Neoplasias Pancreáticas/terapia
14.
Front Pharmacol ; 15: 1362161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425649

RESUMO

Background: Psoriasis, a chronic skin condition characterized by systemic inflammation and altered gut microbiota, has been a target of Traditional Chinese Medicine (TCM) for centuries. Shenling Baizhu Powder (SLBZP), a TCM formulation, holds promise for treating inflammatory diseases, but its specific role in psoriasis and impact on gut microbiota is not fully understood. Objective: This study aims to elucidate the mechanism of SLBZP in treating psoriasis, integrating component analysis, network pharmacology, and experimental validation in mice models. Methods: We commenced with a detailed component analysis of SLBZP using liquid chromatograph and mass spectrometer (LC-MS). Network pharmacology analysis was used to predict the potential action targets and pathways of SLBZP in psoriasis. An in vivo experiment was conducted with psoriasis mice models, treated with SLBZP. Therapeutic effects were assessed via symptomatology, histopathology, and immunohistochemical analysis. Gut microbiota composition was analyzed using 16S rRNA gene sequencing. Results: A total of 42 main components and quality markers were identified, primarily from licorice and ginseng, including flavonoids, saponins and other markers. PPI topology analysis showed that TNF, IL-6, IL-1ß, TP53 and JUN were the core DEPs. 168 signaling pathways including lipid and atherosclerosis, AGE-RAGE signaling pathway, IL-17 signaling pathway and Th17 cell differentiation were enriched by KEGG. SLBZP demonstrated significant therapeutic effects on psoriasis in mice, with alterations in skin pathology and biomarkers. Additionally, notable changes in gut microbiota composition were observed post-treatment, indicating a possible gut-skin axis involvement. Conclusion: This research has pinpointed lipid metabolism as a key pathway in the treatment of psoriasis with SLBZP. It explores how SLBZP's modulation of gut microbiota and lipid metabolism can alleviate psoriasis, suggesting that balancing gut microbiota may reduce inflammation mediators and offer therapeutic benefits. This underscores lipid metabolism modulation as a potential new strategy in psoriasis treatment.

15.
Food Microbiol ; 120: 104484, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431329

RESUMO

Trichothecium roseum is a typical necrotrophic fungal pathogen that not only bring about postharvest disease, but contribute to trichothecenes contamination in fruit and vegetables. Phospholipase D (PLD), as an important membrane lipid degrading enzyme, can produce phosphatidic acid (PA) by hydrolyzing phosphatidylcholine (PC) and phosphatidylinositol (PI). PA can promote the production of reactive oxygen species (ROS) by activating the activity of NADPH oxidase (NOX), thereby increasing the pathogenicity to fruit. However, the ROS mediated by TrPLD3 how to influence T. roseum infection to fruit by modulating phosphatidic acid metabolism, which has not been reported. In this study, the knockout mutant and complement strain of TrPLD3 were constructed through homologous recombination, TrPLD3 was tested for its effect on the colony growth and pathogenicity of T. roseum. The experimental results showed that the knockout of TrPLD3 inhibited the colony growth of T. roseum, altered the mycelial morphology, completely inhibited the sporulation, and reduced the accumulation of T-2 toxin. Moreover, the knockout of TrPLD3 significantly decreased pathogenicity of T. roseum on apple fruit. Compared to inoculated apple fruit with the wide type (WT), the production of ROS in apple infected with ΔTrPLD3 was slowed down, the relative expression and enzymatic activity of NOX, and PA content decreased, and the enzymatic activity and gene expression of superoxide dismutase (SOD) increased. In addition, PLD, lipoxygenase (LOX) and lipase activities were considerably decreased in apple fruit infected with ΔTrPLD3, the changes of membrane lipid components were slowed down, the decrease of unsaturated fatty acid content was alleviated, and the accumulation of saturated fatty acid content was reduced, thereby maintaining the cell membrane integrity of the inoculated apple fruit. We speculated that the decreased PA accumulation in ΔTrPLD3-inoculated apple fruit further weakened the interaction between PA and NOX on fruit, resulting in the reduction of ROS accumulation of fruits, which decreased the damage to the cell membrane and maintained the cell membrane integrity, thus reducing the pathogenicity to apple. Therefore, TrPLD3-mediated ROS plays a critical regulatory role in reducing the pathogenicity of T. roseum on apple fruit by influencing phosphatidic acid metabolism.


Assuntos
Frutas , Hypocreales , Malus , Frutas/microbiologia , Malus/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo
16.
Front Immunol ; 15: 1343301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529280

RESUMO

Objective: To explore the influence of serum metabolites on the risk of psoriasis. Methods: In the initial stage, we applied Mendelian randomization to evaluate the association between 1,400 serum metabolites and the risk of psoriasis. Causal effects were primarily assessed through the Inverse-Variance Weighted method and Wald Ratio's odds ratios, and 95% confidence intervals. False Discovery Rate was used for multiple comparison corrections. Sensitivity analyses were conducted using Cochran's Q Test, MR-PRESSO. MR-Steiger Test was employed to check for reverse causality. In the validation stage, we sought other sources of psoriasis GWAS data to verify the initial results and used meta-analysis to combine the effect sizes to obtain robust causal relationships. In addition, we also conducted metabolic pathway enrichment analysis on known metabolites that have a causal relationship with the risk of psoriasis in both stages. Results: In the initial stage, we identified 112 metabolites causally associated with psoriasis, including 32 metabolite ratios and 80 metabolites (69 known and 11 unknown). In the validation stage, 24 metabolites (16 known, 1 unknown, and 7 metabolite ratios) were confirmed to have a causal relationship with psoriasis onset. Meta-analysis results showed that the overall effect of combined metabolites was consistent with the main analysis in direction and robust in the causal relationship with psoriasis onset. Of the 16 known metabolites, most were attributed to lipid metabolism, with 5 as risk factors and 8 as protective factors for psoriasis. Peptidic metabolite Gamma-glutamylvaline levels had a negative causal relationship with psoriasis, while exogenous metabolite Catechol sulfate levels and amino acid 3-methylglutaconate levels had a positive causal relationship with the disease onset. The metabolites associated with psoriasis risk in the two stages are mainly enriched in the following metabolic pathways: Glutathione metabolism, Alpha Linolenic Acid and Linoleic Acid Metabolism, Biosynthesis of unsaturated fatty acids, Arachidonic acid metabolism, Glycerophospholipid metabolism. Conclusion: Circulating metabolites may have a potential causal relationship with psoriasis risk, and targeting specific metabolites may benefit psoriasis diagnosis, disease assessment, and treatment.


Assuntos
Análise da Randomização Mendeliana , Psoríase , Humanos , Causalidade , Fatores de Risco , Fatores de Proteção , Psoríase/genética
17.
J Fungi (Basel) ; 10(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535172

RESUMO

Penicillium expansum is the predominant causal agent causing blue mold in postharvest fresh Codonopsis pilosula during storage. The pathogen reduces the yield and affects the quality of C. pilosula and even generates patulin, threatening human health. In this study, postharvest fresh, healthy C. pilosula was sprayed with P. expansum, and the control effect of ozone on postharvest diseases of C. pilosula was studied, and the effect of ozone on the contents in the main active ingredients of C. pilosula was compared; finally, the effect of ozone on reactive oxygen species (ROS) metabolism in C. pilosula was analyzed. The results showed that 2 mg L-1 ozone application significantly inhibited the occurrence of postharvest blue mold caused by P. expansum, reduced weight loss rate, controlled the accumulation of patulin and maintained the contents of the main active components in C. pilosula. The study will provide a theoretical basis for ozone treatment to control the occurrence of postharvest diseases of C. pilosula.

18.
Food Microbiol ; 119: 104434, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225046

RESUMO

Ypt GTPases are the largest subfamily of small GTPases involved in membrane transport. Here, a PeYpt7 gene deletion mutant of P. expansum was constructed. The ΔPeYpt7 mutant showed reduced colony growth with abnormal mycelial growth, reduced conidiation, and insufficient spore development. The mutation rendered the pathogen susceptible to osmotic stress and cell wall stressors. In addition, the absence of PeYpt7 reduced patulin production in P. expansum and significantly limited gene expression (PatG, PatH, PatI, PatD, PatF, and PatL). In addition, the mutant showed attenuated virulence in infected fruit and reduced expression of pathogenic factors was (PMG, PG, PL, and GH1). Thus, PeYpt7 modulates the growth, morphology, patulin accumulation, and pathogenicity of P. expansum by limiting the expression of related genes.


Assuntos
Malus , Proteínas Monoméricas de Ligação ao GTP , Patulina , Penicillium , Virulência/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Frutas/metabolismo
19.
Genes Dis ; 11(3): 100988, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38292199

RESUMO

Osteosarcoma is a differentiation-deficient disease, and despite the unique advantages and great potential of differentiation therapy, there are only a few known differentiation inducers, and little research has been done on their targets. Cell differentiation is associated with an increase in mitochondrial content and activity. The metabolism of some tumor cells is characterized by impaired oxidative phosphorylation, as well as up-regulation of aerobic glycolysis and pentose phosphate pathways. Leucine-containing zipper and EF-hand transmembrane protein 1 (LETM1) is involved in the maintenance of mitochondrial morphology and is closely associated with tumorigenesis and progression, as well as cancer cell stemness. We found that MG63 and 143B osteosarcoma cells overexpress LETM1 and exhibit abnormalities in mitochondrial structure and function. Knockdown of LETM1 partially restored the mitochondrial structure and function, inhibited the pentose phosphate pathway, promoted oxidative phosphorylation, and led to osteogenic differentiation. It also inhibited spheroid cell formation, proliferation, migration, and invasion in an in vitro model. When LETM1 was knocked down in vivo, there was reduced tumor formation and lung metastasis. These data suggest that mitochondria are aberrant in LETM1-overexpressing osteosarcoma cells, and knockdown of LETM1 partially restores the mitochondrial structure and function, inhibits the pentose phosphate pathway, promotes oxidative phosphorylation, and increases osteogenic differentiation, thereby reducing malignant biological behavior of the cells.

20.
Skin Res Technol ; 30(1): e13538, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38174774

RESUMO

BACKGROUND: Psoriasis is an immune-mediated chronic inflammatory skin disease. Great progress has been made in the pathogenesis of psoriasis in recent years, but there is no bibliometric study on the pathogenesis of psoriasis. The purpose of this study was to use bibliometrics method to analyze the research overview and hot spots of pathogenesis of psoriasis in recent 10 years, so as to further understand the development trend and frontier of this field. METHODS: The core literatures on the pathogenesis of psoriasis were searched in the Web of Science database, and analyzed by VOSviewer, CiteSpace, and Bibliometrix in terms of the annual publication volume, country, institution, author, journal, keywords, and so on. RESULTS: A total of 3570 literatures were included. China and the United States were the main research countries in this field, and Rockefeller University was the main research institution. Krueger JG, the author, had the highest number of publications and the greatest influence, and Boehncke (2015) was the most cited local literature. J INVEST DERMATOL takes the top spot in terms of the number of Dermatol articles and citation frequency. The main research hotspots in the pathogenesis of psoriasis are as follows: (1) The interaction between innate and adaptive immunity and the related inflammatory loop dominated by Th17 cells and IL-23/IL-17 axis are still the key mechanisms of psoriasis; (2) molecular genetic studies represented by Long Non-Coding RNA (LncRNA); (3) integrated research of multi-omics techniques represented by gut microbiota; and (4) Exploring the comorbidity mechanism of psoriasis represented by Metabolic Syndrome (MetS). CONCLUSION: This study is a summary of the current research status and hot trend of the pathogenesis of psoriasis, which will provide some reference for the scholars studying the pathogenesis of psoriasis.


Assuntos
Psoríase , Humanos , Pele , Bibliometria , China , Bases de Dados Factuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...