RESUMO
The present study describes for the first time a procedure for the radiolabeling of fullerene (C(60)) nanocrystals (nanoC(60)) with Na (125)I, as well as the biodistribution of radiolabeled nanoC(60) ((125)I-nanoC(60)). The solvent exchange method with tetrahydrofuran was used to make colloidal water suspensions of radiolabeled nanoC(60) particles. The radiolabeling procedure with the addition of Na (125)I to tetrahydrofuran during dissolution of C(60) gave a higher radiochemical yield of radiolabeled nanoC(60) particles in comparison to the second option, in which Na (125)I was added after C(60) was dissolved. Using photon correlation spectroscopy and transmission electron microscopy, (125)I-nanoC(60) particles were found to have a crystalline structure and a mean diameter of 200-250 nm. The (125)I-nanoC(60) had a particularly high affinity for human serum albumin, displaying 95% binding efficiency after 1 h. Biodistribution studies of (125)I-nanoC(60) in rats indicated significant differences in tissue accumulation of (125)I-nanoC(60) and the radioactive tracer Na (125)I. The higher accumulation of radiolabeled nanoC(60) was observed in liver and spleen, while accumulation in thyroid, stomach, lungs and intestines was significantly lower in comparison to Na (125)I. In addition to being useful for testing the biological distribution of nanoC(60), the described radiolabeling procedure might have possible applications in cancer radiotherapy.
Assuntos
Fulerenos/química , Fulerenos/farmacocinética , Nanopartículas/química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Isótopos de Sódio/química , Animais , Cromatografia em Gel , Coloides/metabolismo , Dextranos , Feminino , Humanos , Marcação por Isótopo/métodos , Tamanho da Partícula , Compostos Radiofarmacêuticos/síntese química , Ratos , Ratos Wistar , Albumina Sérica/metabolismo , Isótopos de Sódio/farmacocinética , Distribuição TecidualRESUMO
Titanium dioxide nanopowders doped with different amounts of Fe ions were prepared by coprecipitation method. Obtained materials were characterized by structural (XRD), morphological (TEM and SEM), optical (UV/vis reflection and photoluminescence, and Raman), and analytical techniques (XPS and ICP-OES). XRD analysis revealed rutile crystalline phase for doped and undoped titanium dioxide obtained in the same manner. Diameter of the particles was 5-7 nm. The presence of iron ions was confirmed by XPS and ICP-OES. Doping process moved absorption threshold of TiO(2) into visible spectrum range. Photocatalytic activity was also checked. Doped nanopowders showed normal and up-converted photoluminescence.
RESUMO
The influence of shape and dielectric property of surrounding media on surface plasmon absorption band of silver nanoparticles was studied. Spherical silver nanoparticles (d = 5.6 nm) synthesized in water using NaBH4 as a reducing agent are transferred in non-polar solvent (chloroform) with phase-transfer reagent oleylamine. The absorption spectrum of oleylamine-capped silver nanoparticles dispersed in chloroform shows a strong surface plasmon resonance band that is 19 nm red-shifted compared to unmodified particles in water. The values for peak position and corresponding half widths are compared with theoretical calculations based on Mie theory. Prismatic and plate-like silver nanoparticles were synthesized in water using trisodium citrate as a reducing agent and cetyltrimethylammonium bromide as stabilizer. Due to structural anisotropy of prismatic and plate-like silver nanoparticles three surface plasmon resonance bands were observed in absorption spectrum. Nanocomposites consisting of non-spherical silver nanoparticles and polyvinyl alcohol exhibit different optical properties compared to water colloid. Instead of three surface plasmon bands, nanocomposite film has only one peak at 460 nm. Reason for appearance of single surface plasmon resonance band in nanocomposite film was discussed according to Maxwell-Garnet theory.