Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 5(9): 1544-1562, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37563469

RESUMO

Resistance of melanoma to targeted therapy and immunotherapy is linked to metabolic rewiring. Here, we show that increased fatty acid oxidation (FAO) during prolonged BRAF inhibitor (BRAFi) treatment contributes to acquired therapy resistance in mice. Targeting FAO using the US Food and Drug Administration-approved and European Medicines Agency-approved anti-anginal drug ranolazine (RANO) delays tumour recurrence with acquired BRAFi resistance. Single-cell RNA-sequencing analysis reveals that RANO diminishes the abundance of the therapy-resistant NGFRhi neural crest stem cell subpopulation. Moreover, by rewiring the methionine salvage pathway, RANO enhances melanoma immunogenicity through increased antigen presentation and interferon signalling. Combination of RANO with anti-PD-L1 antibodies strongly improves survival by increasing antitumour immune responses. Altogether, we show that RANO increases the efficacy of targeted melanoma therapy through its effects on FAO and the methionine salvage pathway. Importantly, our study suggests that RANO could sensitize BRAFi-resistant tumours to immunotherapy. Since RANO has very mild side-effects, it might constitute a therapeutic option to improve the two main strategies currently used to treat metastatic melanoma.


Assuntos
Melanoma , Estados Unidos , Animais , Camundongos , Ranolazina/farmacologia , Ranolazina/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Imunoterapia , Inibidores de Proteínas Quinases/farmacologia , Metionina
2.
Cell Metab ; 34(11): 1675-1699, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36261043

RESUMO

Lipids have essential biological functions in the body (e.g., providing energy storage, acting as a signaling molecule, and being a structural component of membranes); however, an excess of lipids can promote tumorigenesis, colonization, and metastatic capacity of tumor cells. To metastasize, a tumor cell goes through different stages that require lipid-related metabolic and structural adaptations. These adaptations include altering the lipid membrane composition for invading other niches and overcoming cell death mechanisms and promoting lipid catabolism and anabolism for energy and oxidative stress protective purposes. Cancer cells also harness lipid metabolism to modulate the activity of stromal and immune cells to their advantage and to resist therapy and promote relapse. All this is especially worrying given the high fat intake in Western diets. Thus, metabolic interventions aiming to reduce lipid availability to cancer cells or to exacerbate their metabolic vulnerabilities provide promising therapeutic opportunities to prevent cancer progression and treat metastasis.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Metabolismo dos Lipídeos , Transdução de Sinais , Estresse Oxidativo , Lipídeos
3.
Nature ; 599(7885): 485-490, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34759321

RESUMO

Fatty acid uptake and altered metabolism constitute hallmarks of metastasis1,2, yet evidence of the underlying biology, as well as whether all dietary fatty acids are prometastatic, is lacking. Here we show that dietary palmitic acid (PA), but not oleic acid or linoleic acid, promotes metastasis in oral carcinomas and melanoma in mice. Tumours from mice that were fed a short-term palm-oil-rich diet (PA), or tumour cells that were briefly exposed to PA in vitro, remained highly metastatic even after being serially transplanted (without further exposure to high levels of PA). This PA-induced prometastatic memory requires the fatty acid transporter CD36 and is associated with the stable deposition of histone H3 lysine 4 trimethylation by the methyltransferase Set1A (as part of the COMPASS complex (Set1A/COMPASS)). Bulk, single-cell and positional RNA-sequencing analyses indicate that genes with this prometastatic memory predominantly relate to a neural signature that stimulates intratumoural Schwann cells and innervation, two parameters that are strongly correlated with metastasis but are aetiologically poorly understood3,4. Mechanistically, tumour-associated Schwann cells secrete a specialized proregenerative extracellular matrix, the ablation of which inhibits metastasis initiation. Both the PA-induced memory of this proneural signature and its long-term boost in metastasis require the transcription factor EGR2 and the glial-cell-stimulating peptide galanin. In summary, we provide evidence that a dietary metabolite induces stable transcriptional and chromatin changes that lead to a long-term stimulation of metastasis, and that this is related to a proregenerative state of tumour-activated Schwann cells.


Assuntos
Gorduras na Dieta/farmacologia , Metástase Neoplásica , Ácido Palmítico/farmacologia , Células de Schwann/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Gorduras na Dieta/administração & dosagem , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Feminino , Galanina/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Masculino , Camundongos , Ácido Palmítico/administração & dosagem , Células de Schwann/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...