Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865495

RESUMO

Understanding the expression level and evolutionary rate of associated genes with human polygenic diseases provides crucial insights into their disease-contributing roles. In this work, we leveraged genome-wide association studies to investigate the relationship between the genetic association and both the evolutionary rate (dN/dS) and expression level of human genes associated with the two polygenic diseases of schizophrenia and coronary artery disease. Our findings highlight a distinct variation in these relationships between the two diseases. Genes associated with both diseases exhibit a significantly greater variance in evolutionary rate compared to those implicated in monogenic diseases. Expanding our analyses to 4,756 complex traits in the GWAS atlas database, we unraveled distinct trait categories with a unique interplay among the evolutionary rate, expression level, and genetic association of human genes. In most polygenic traits, highly expressed genes were more associated with the polygenic phenotypes compared to lowly expressed genes. About 69% of polygenic traits displayed a negative correlation between genetic association and evolutionary rate, while approximately 30% of these traits showed a positive correlation between genetic association and evolutionary rate. Our results demonstrate the presence of a spectrum among complex traits, shaped by natural selection. Notably, at opposite ends of this spectrum, we find metabolic traits being more likely influenced by purifying selection, and immunological traits that are more likely shaped by positive selection. We further established the polygenic evolution portal (evopolygen.de) as a resource for investigating relationships and generating hypotheses in the field of human polygenic trait evolution.

2.
Physiol Genomics ; 56(5): 384-396, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38406838

RESUMO

Tissue-specific gene expression and gene regulation lead to a better understanding of tissue-specific physiology and pathophysiology. We analyzed the transcriptome and genetic regulatory profiles of two distinct gastric sites, corpus and antrum, to identify tissue-specific gene expression and its regulation. Gastric corpus and antrum mucosa biopsies were collected during routine gastroscopies from up to 431 healthy individuals. We obtained genotype and transcriptome data and performed transcriptome profiling and expression quantitative trait locus (eQTL) studies. We further used data from genome-wide association studies (GWAS) of various diseases and traits to partition their heritability and to perform transcriptome-wide association studies (TWAS). The transcriptome data from corpus and antral mucosa highlights the heterogeneity of gene expression in the stomach. We identified enriched pathways revealing distinct and common physiological processes in gastric corpus and antrum. Furthermore, we found an enrichment of the single nucleotide polymorphism (SNP)-based heritability of metabolic, obesity-related, and cardiovascular traits and diseases by considering corpus- and antrum-specifically expressed genes. Particularly, we could prioritize gastric-specific candidate genes for multiple metabolic traits, like NQO1 which is involved in glucose metabolism, MUC1 which contributes to purine and protein metabolism or RAB27B being a regulator of weight and body composition. Our findings show that gastric corpus and antrum vary in their transcriptome and genetic regulatory profiles indicating physiological differences which are mostly related to digestion and epithelial protection. Moreover, our findings demonstrate that the genetic regulation of the gastric transcriptome is linked to biological mechanisms associated with metabolic, obesity-related, and cardiovascular traits and diseases. NEW & NOTEWORTHY We analyzed the transcriptomes and genetic regulatory profiles of gastric corpus and for the first time also of antrum mucosa in 431 healthy individuals. Through tissue-specific gene expression and eQTL analyses, we uncovered unique and common physiological processes across both primary gastric sites. Notably, our findings reveal that stomach-specific eQTLs are enriched in loci associated with metabolic traits and diseases, highlighting the pivotal role of gene expression regulation in gastric physiology and potential pathophysiology.


Assuntos
Estudo de Associação Genômica Ampla , Transcriptoma , Humanos , Transcriptoma/genética , Regulação da Expressão Gênica , Polimorfismo de Nucleotídeo Único/genética , Estômago , Obesidade/genética , Predisposição Genética para Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...