Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Genet Sel Evol ; 56(1): 41, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773363

RESUMO

BACKGROUND: Breeding programs are judged by the genetic level of animals that are used to disseminate genetic progress. These animals are typically the best ones of the population. To maximise the genetic level of very good animals in the next generation, parents that are more likely to produce top performing offspring need to be selected. The ability of individuals to produce high-performing progeny differs because of differences in their breeding values and gametic variances. Differences in gametic variances among individuals are caused by differences in heterozygosity and linkage. The use of the gametic Mendelian sampling variance has been proposed before, for use in the usefulness criterion or Index5, and in this work, we extend existing approaches by not only considering the gametic Mendelian sampling variance of individuals, but also of their potential offspring. Thus, the criteria developed in this study plan one additional generation ahead. For simplicity, we assumed that the true quantitative trait loci (QTL) effects, genetic map and the haplotypes of all animals are known. RESULTS: In this study, we propose a new selection criterion, ExpBVSelGrOff, which describes the genetic level of selected grand-offspring that are produced by selected offspring of a particular mating. We compare our criterion with other published criteria in a stochastic simulation of an ongoing breeding program for 21 generations for proof of concept. ExpBVSelGrOff performed better than all other tested criteria, like the usefulness criterion or Index5 which have been proposed in the literature, without compromising short-term gains. After only five generations, when selection is strong (1%), selection based on ExpBVSelGrOff achieved 5.8% more commercial genetic gain and retained 25% more genetic variance without compromising inbreeding rate compared to selection based only on breeding values. CONCLUSIONS: Our proposed selection criterion offers a new tool to accelerate genetic progress for contemporary genomic breeding programs. It retains more genetic variance than previously published criteria that plan less far ahead. Considering future gametic Mendelian sampling variances in the selection process also seems promising for maintaining more genetic variance.


Assuntos
Modelos Genéticos , Locos de Características Quantitativas , Seleção Genética , Animais , Cruzamento/métodos , Feminino , Masculino , Seleção Artificial
2.
Genet Sel Evol ; 56(1): 30, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632535

RESUMO

BACKGROUND: Breeding queens may be mated with drones that are produced by a single drone-producing queen (DPQ), or a group of sister-DPQs, but often only the dam of the DPQ(s) is reported in the pedigree. Furthermore, datasets may include colony phenotypes from DPQs that were open-mated at different locations, and thus to a heterogeneous drone population. METHODS: Simulation was used to investigate the impact of the mating strategy and its modelling on the estimates of genetic parameters and genetic trends when the DPQs are treated in different ways in the statistical evaluation model. We quantified the bias and standard error of the estimates when breeding queens were mated to one DPQ or a group of DPQs, assuming that this information was known or not. We also investigated four alternative strategies to accommodate the phenotypes of open-mated DPQs in the genetic evaluation: excluding their phenotypes, adding a dummy pseudo-sire in the pedigree, or adding a non-genetic (fixed or random) effect to the statistical evaluation model to account for the origin of the mates. RESULTS: The most precise estimates of genetic parameters and genetic trends were obtained when breeding queens were mated with drones of single DPQs that are correctly assigned in the pedigree. However, when they were mated with drones from one or a group of DPQs, and this information was not known, erroneous assumptions led to considerable bias in these estimates. Furthermore, genetic variances were considerably overestimated when phenotypes of colonies from open-mated DPQs were adjusted for their mates by adding a dummy pseudo-sire in the pedigree for each subpopulation of open-mating drones. On the contrary, correcting for the heterogeneous drone population by adding a non-genetic effect in the evaluation model produced unbiased estimates. CONCLUSIONS: Knowing only the dam of the DPQ(s) used in each mating may lead to erroneous assumptions on how DPQs were used and severely bias the estimates of genetic parameters and trends. Thus, we recommend keeping track of DPQs in the pedigree, and not only of the dams of DPQ(s). Records from DPQ colonies with queens open-mated to a heterogeneous drone population can be integrated by adding non-genetic effects to the statistical evaluation model.


Assuntos
Reprodução , Abelhas , Animais , Incerteza , Fenótipo , Simulação por Computador , Viés
3.
Genet Sel Evol ; 55(1): 67, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770844

RESUMO

BACKGROUND: Harmful social behaviours, such as injurious feather pecking in poultry and tail biting in swine, reduce animal welfare and production efficiency. While these behaviours are heritable, selective breeding is still limited due to a lack of individual phenotyping methods for large groups and proper genetic models. In the near future, large-scale longitudinal data on social behaviours will become available, e.g. through computer vision techniques, and appropriate genetic models will be needed to analyse such data. In this paper, we investigated prospects for genetic improvement of social traits recorded in large groups by (1) developing models to simulate and analyse large-scale longitudinal data on social behaviours, and (2) investigating required sample sizes to obtain reasonable accuracies of estimated genetic parameters and breeding values (EBV). RESULTS: Latent traits were defined as representing tendencies of individuals to be engaged in social interactions by distinguishing between performer and recipient effects. Animal movement was assumed random and without genetic variation, and performer and recipient interaction effects were assumed constant over time. Based on the literature, observed-scale heritabilities ([Formula: see text]) of performer and recipient effects were both set to 0.05, 0.1, or 0.2, and the genetic correlation ([Formula: see text]) between those effects was set to - 0.5, 0, or 0.5. Using agent-based modelling, we simulated ~ 200,000 interactions for 2000 animals (~ 1000 interactions per animal) with a half-sib family structure. Variance components and breeding values were estimated with a general linear mixed model. The estimated genetic parameters did not differ significantly from the true values. When all individuals and interactions were included in the analysis, the accuracy of EBV was 0.61, 0.70, and 0.76 for [Formula: see text] = 0.05, 0.1, and 0.2, respectively (for [Formula: see text]= 0). Including 2000 individuals each with only ~ 100 interactions, already yielded promising accuracies of 0.47, 0.60, and 0.71 for [Formula: see text] = 0.05, 0.1, and 0.2, respectively (with [Formula: see text] = 0). Similar results were found with [Formula: see text] of - 0.5 or 0.5. CONCLUSIONS: We developed models to simulate and genetically analyse social behaviours for animals that are kept in large groups, anticipating the availability of large-scale longitudinal data in the near future. We obtained promising accuracies of EBV with ~ 100 interactions per individual, which would correspond to a few weeks of recording. Therefore, we conclude that animal breeding can be a promising strategy to improve social behaviours in livestock.


Assuntos
Cruzamento , Gado , Humanos , Suínos , Animais , Gado/genética , Seleção Artificial , Comportamento Social , Fenótipo , Modelos Genéticos
4.
Genetics ; 225(1)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37506255

RESUMO

Genetic selection has been applied for many generations in animal, plant, and experimental populations. Selection changes the allelic architecture of traits to create genetic gain. It remains unknown whether the changes in allelic architecture are different for the recently introduced technique of genomic selection compared to traditional selection methods and whether they depend on the genetic architectures of traits. Here, we investigate the allele frequency changes of old and new causal loci under 50 generations of phenotypic, pedigree, and genomic selection, for a trait controlled by either additive, additive and dominance, or additive, dominance, and epistatic effects. Genomic selection resulted in slightly larger and faster changes in allele frequencies of causal loci than pedigree selection. For each locus, allele frequency change per generation was not only influenced by its statistical additive effect but also to a large extent by the linkage phase with other loci and its allele frequency. Selection fixed a large number of loci, and 5 times more unfavorable alleles became fixed with genomic and pedigree selection than with phenotypic selection. For pedigree selection, this was mainly a result of increased genetic drift, while genetic hitchhiking had a larger effect on genomic selection. When epistasis was present, the average allele frequency change was smaller (∼15% lower), and a lower number of loci became fixed for all selection methods. We conclude that for long-term genetic improvement using genomic selection, it is important to consider hitchhiking and to limit the loss of favorable alleles.


Assuntos
Genoma , Seleção Genética , Animais , Frequência do Gene , Genômica , Mutação , Modelos Genéticos
5.
Genet Sel Evol ; 55(1): 2, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639760

RESUMO

BACKGROUND: The genetic correlation between purebred (PB) and crossbred (CB) performances ([Formula: see text]) partially determines the response in CB when selection is on PB performance in the parental lines. An earlier study has derived expressions for an upper and lower bound of [Formula: see text], using the variance components of the parental purebred lines, including e.g. the additive genetic variance in the sire line for the trait expressed in one of the dam lines. How to estimate these variance components is not obvious, because animals from one parental line do not have phenotypes for the trait expressed in the other line. Thus, the aim of this study was to propose and compare three methods for approximating the required variance components. The first two methods are based on (co)variances of genomic estimated breeding values (GEBV) in the line of interest, either accounting for shrinkage (VCGEBV-S) or not (VCGEBV). The third method uses restricted maximum likelihood (REML) estimates directly from univariate and bivariate analyses (VCREML) by ignoring that the variance components should refer to the line of interest, rather than to the line in which the trait is expressed. We validated these methods by comparing the resulting predicted bounds of [Formula: see text] with the [Formula: see text] estimated from PB and CB data for five traits in a three-way cross in pigs. RESULTS: With both VCGEBV and VCREML, the estimated [Formula: see text] (plus or minus one standard error) was between the upper and lower bounds in 14 out of 15 cases. However, the range between the bounds was much smaller with VCREML (0.15-0.22) than with VCGEBV (0.44-0.57). With VCGEBV-S, the estimated [Formula: see text] was between the upper and lower bounds in only six out of 15 cases, with the bounds ranging from 0.21 to 0.44. CONCLUSIONS: We conclude that using REML estimates of variance components within and between parental lines to predict the bounds of [Formula: see text] resulted in better predictions than methods based on GEBV. Thus, we recommend that the studies that estimate [Formula: see text] with genotype data also report estimated genetic variance components within and between the parental lines.


Assuntos
Genoma , Modelos Genéticos , Suínos , Animais , Genótipo , Fenótipo , Genômica/métodos
6.
Genet Sel Evol ; 54(1): 73, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348272

RESUMO

BACKGROUND: Recent research shows that genetic selection has high potential to reduce the prevalence of infectious diseases in livestock. However, like all interventions that target infectious diseases, genetic selection of livestock can exert selection pressure on pathogen populations. Such selection on the pathogen may lead to escape strategies and reduce the effect of selection of livestock for disease resistance. Thus, to successfully breed livestock for lower disease prevalence, it is essential to develop strategies that prevent the invasion of pathogen mutants that escape host resistance. Here we investigate the conditions under which such "escape mutants" can replace wild-type pathogens in a closed livestock population using a mathematical model of disease transmission. RESULTS: Assuming a single gene that confers sufficient resistance, results show that genetic selection for resistance in livestock typically leads to an "invasion window" within which an escape mutant of the pathogen can invade. The bounds of the invasion window are determined by the frequency of resistant hosts in the population. The lower bound occurs when the escape mutant has an advantage over the wild-type pathogen in the population. The upper bound occurs when local eradication of the pathogen is expected. The invasion window is smallest when host resistance is strong and when infection with the wild-type pathogen provides cross immunity to infection with the escape mutant. CONCLUSIONS: To minimise opportunities for pathogens to adapt, under the assumptions of our model, the aim of disease control through genetic selection should be to achieve herd-level eradication of the infection faster than the rate of emergence of escape mutants of the pathogen. Especially for microparasitic infections, this could be achieved by placing animals into herds according to their genetic resistance, such that these herds stay completely out of the invasion window. In contrast to classical breeding theory, our model suggests that multi-trait selection with gradual improvement of each trait of the breeding goal might not be the best strategy when resistance to infectious disease is part of the breeding goal. Temporally, combining genetic selection with other interventions helps to make the invasion window smaller, and thereby reduces the risk of invasion of escape mutants.


Assuntos
Doenças Transmissíveis , Gado , Animais , Gado/genética , Fenótipo , Resistência à Doença/genética , Doenças Transmissíveis/genética , Doenças Transmissíveis/veterinária
7.
Evol Appl ; 15(4): 694-705, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35505880

RESUMO

Phenotypic variability of a genotype is relevant both in natural and domestic populations. In the past two decades, variability has been studied as a heritable quantitative genetic trait in its own right, often referred to as inherited variability or environmental canalization. So far, studies on inherited variability have only considered genetic effects of the focal individual, that is, direct genetic effects on inherited variability. Observations from aquaculture populations and some plants, however, suggest that an additional source of genetic variation in inherited variability may be generated through competition. Social interactions, such as competition, are often a source of Indirect Genetic Effects (IGE). An IGE is a heritable effect of an individual on the trait value of another individual. IGEs may substantially affect heritable variation underlying the trait, and the direction and magnitude of response to selection. To understand the contribution of IGEs to evolution of environmental canalization in natural populations, and to exploit such inherited variability in animal and plant breeding, we need statistical models to capture this effect. To our knowledge, it is unknown to what extent the current statistical models commonly used for IGE and inherited variability capture the effect of competition on inherited variability. Here, we investigate the potential of current statistical models for inherited variability and trait values, to capture the direct and indirect genetic effects of competition on variability. Our results show that a direct model of inherited variability almost entirely captures the genetic sensitivity of individuals to competition, whereas an indirect model of inherited variability captures the cooperative genetic effects of individuals on their partners. Models for trait levels, however, capture only a small part of the genetic effects of competition. The estimation of direct and indirect genetic effects of competition, therefore, is possible with models for inherited variability but may require a two-step analysis.

8.
Genet Sel Evol ; 54(1): 19, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255802

RESUMO

BACKGROUND: Genomic selection has revolutionized genetic improvement in animals and plants, but little is known about its long-term effects. Here, we investigated the long-term effects of genomic selection on response to selection, genetic variance, and the genetic architecture of traits using stochastic simulations. We defined the genetic architecture as the set of causal loci underlying each trait, their allele frequencies, and their statistical additive effects. We simulated a livestock population under 50 generations of phenotypic, pedigree, or genomic selection for a single trait, controlled by either only additive, additive and dominance, or additive, dominance, and epistatic effects. The simulated epistasis was based on yeast data. RESULTS: Short-term response was always greatest with genomic selection, while response after 50 generations was greater with phenotypic selection than with genomic selection when epistasis was present, and was always greater than with pedigree selection. This was mainly because loss of genetic variance and of segregating loci was much greater with genomic and pedigree selection than with phenotypic selection. Compared to pedigree selection, selection response was always greater with genomic selection. Pedigree and genomic selection lost a similar amount of genetic variance after 50 generations of selection, but genomic selection maintained more segregating loci, which on average had lower minor allele frequencies than with pedigree selection. Based on this result, genomic selection is expected to better maintain genetic gain after 50 generations than pedigree selection. The amount of change in the genetic architecture of traits was considerable across generations and was similar for genomic and pedigree selection, but slightly less for phenotypic selection. Presence of epistasis resulted in smaller changes in allele frequencies and less fixation of causal loci, but resulted in substantial changes in statistical additive effects across generations. CONCLUSIONS: Our results show that genomic selection outperforms pedigree selection in terms of long-term genetic gain, but results in a similar reduction of genetic variance. The genetic architecture of traits changed considerably across generations, especially under selection and when non-additive effects were present. In conclusion, non-additive effects had a substantial impact on the accuracy of selection and long-term response to selection, especially when selection was accurate.


Assuntos
Modelos Genéticos , Seleção Genética , Animais , Genoma , Genômica/métodos , Linhagem , Fenótipo
9.
Genet Sel Evol ; 54(1): 12, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135468

RESUMO

BACKGROUND: Linkage disequilibrium (LD) is commonly measured based on the squared coefficient of correlation [Formula: see text] between the alleles at two loci that are carried by haplotypes. LD can also be estimated as the [Formula: see text] between unphased genotype dosage at two loci when the allele frequencies and inbreeding coefficients at both loci are identical for the parental lines. Here, we investigated whether [Formula: see text] for a crossbred population (F1) can be estimated using genotype data. The parental lines of the crossbred (F1) can be purebred or crossbred. METHODS: We approached this by first showing that inbreeding coefficients for an F1 crossbred population are negative, and typically differ in size between loci. Then, we proved that the expected [Formula: see text] computed from unphased genotype data is expected to be identical to the [Formula: see text] computed from haplotype data for an F1 crossbred population, regardless of the inbreeding coefficients at the two loci. Finally, we investigated the bias and precision of the [Formula: see text] estimated using unphased genotype versus haplotype data in stochastic simulation. RESULTS: Our findings show that estimates of [Formula: see text] based on haplotype and unphased genotype data are both unbiased for different combinations of allele frequencies, sample sizes (900, 1800, and 2700), and levels of LD. In general, for any allele frequency combination and [Formula: see text] value scenarios considered, and for both methods to estimate [Formula: see text], the precision of the estimates increased, and the bias of the estimates decreased as sample size increased, indicating that both estimators are consistent. For a given scenario, the [Formula: see text] estimates using haplotype data were more precise and less biased using haplotype data than using unphased genotype data. As sample size increased, the difference in precision and biasedness between the [Formula: see text] estimates using haplotype data and unphased genotype data decreased. CONCLUSIONS: Our theoretical derivations showed that estimates of LD between loci based on unphased genotypes and haplotypes in F1 crossbreds have identical expectations. Based on our simulation results, we conclude that the LD for an F1 crossbred population can be accurately estimated from unphased genotype data. The results also apply for other crosses (F2, F3, Fn, BC1, BC2, and BCn), as long as (selected) individuals from the two parental lines mate randomly.


Assuntos
Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Frequência do Gene , Genótipo , Haplótipos , Humanos , Desequilíbrio de Ligação
10.
Genet Sel Evol ; 54(1): 13, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164676

RESUMO

BACKGROUND: Deterministic predictions of the accuracy of genomic estimated breeding values (GEBV) when combining information sources have been developed based on selection index theory (SIT) and on Fisher information (FI). These two approaches have resulted in slightly different results when considering the combination of pedigree and genomic information. Here, we clarify this apparent contradiction, both for the combination of pedigree and genomic information and for the combination of subpopulations into a joint reference population. RESULTS: First, we show that existing expressions for the squared accuracy of GEBV can be understood as a proportion of the variance explained. Next, we show that the apparent discrepancy that has been observed between accuracies based on SIT vs. FI originated from two sources. First, the FI referred to the genetic component that is captured by the marker genotypes, rather than the full genetic component. Second, the common SIT-based derivations did not account for the increase in the accuracy of GEBV due to a reduction of the residual variance when combining information sources. The SIT and FI approaches are equivalent when these sources are accounted for. CONCLUSIONS: The squared accuracy of GEBV can be understood as a proportion of the variance explained. The SIT and FI approaches for combining information for GEBV are equivalent and provide identical accuracies when the underlying assumptions are equivalent.


Assuntos
Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Genoma , Genômica , Genótipo , Linhagem , Fenótipo
11.
Genetics ; 220(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34849837

RESUMO

Infectious diseases have profound effects on life, both in nature and agriculture. However, a quantitative genetic theory of the host population for the endemic prevalence of infectious diseases is almost entirely lacking. While several studies have demonstrated the relevance of transmission of infections for heritable variation and response to selection, current quantitative genetics ignores transmission. Thus, we lack concepts of breeding value and heritable variation for endemic prevalence, and poorly understand response of endemic prevalence to selection. Here, we integrate quantitative genetics and epidemiology, and propose a quantitative genetic theory for the basic reproduction number R0 and for the endemic prevalence of an infection. We first identify the genetic factors that determine the prevalence. Subsequently, we investigate the population-level consequences of individual genetic variation, for both R0 and the endemic prevalence. Next, we present expressions for the breeding value and heritable variation, for endemic prevalence and individual binary disease status, and show that these depend strongly on the prevalence. Results show that heritable variation for endemic prevalence is substantially greater than currently believed, and increases strongly when prevalence decreases, while heritability of disease status approaches zero. As a consequence, response of the endemic prevalence to selection for lower disease status accelerates considerably when prevalence decreases, in contrast to classical predictions. Finally, we show that most heritable variation for the endemic prevalence is hidden in indirect genetic effects, suggesting a key role for kin-group selection in the evolutionary history of current populations and for genetic improvement in animals and plants.


Assuntos
Modelos Genéticos
12.
Foods ; 12(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613301

RESUMO

In livestock breeding, continuous and objective monitoring of animals is manually unfeasible due to the large scale of breeding and expensive labour. Computer vision technology can generate accurate and real-time individual animal or animal group information from video surveillance. However, the frequent occlusion between animals and changes in appearance features caused by varying lighting conditions makes single-camera systems less attractive. We propose a double-camera system and image registration algorithms to spatially fuse the information from different viewpoints to solve these issues. This paper presents a deformable learning-based registration framework, where the input image pairs are initially linearly pre-registered. Then, an unsupervised convolutional neural network is employed to fit the mapping from one view to another, using a large number of unlabelled samples for training. The learned parameters are then used in a semi-supervised network and fine-tuned with a small number of manually annotated landmarks. The actual pixel displacement error is introduced as a complement to an image similarity measure. The performance of the proposed fine-tuned method is evaluated on real farming datasets and demonstrates significant improvement in lowering the registration errors than commonly used feature-based and intensity-based methods. This approach also reduces the registration time of an unseen image pair to less than 0.5 s. The proposed method provides a high-quality reference processing step for improving subsequent tasks such as multi-object tracking and behaviour recognition of animals for further analysis.

13.
Front Plant Sci ; 12: 734167, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868116

RESUMO

Intercropping is both a well-established and yet novel agricultural practice, depending on one's perspective. Such perspectives are principally governed by geographic location and whether monocultural practices predominate. Given the negative environmental effects of monoculture agriculture (loss of biodiversity, reliance on non-renewable inputs, soil degradation, etc.), there has been a renewed interest in cropping systems that can reduce the impact of modern agriculture while maintaining (or even increasing) yields. Intercropping is one of the most promising practices in this regard, yet faces a multitude of challenges if it is to compete with and ultimately replace the prevailing monocultural norm. These challenges include the necessity for more complex agricultural designs in space and time, bespoke machinery, and adapted crop cultivars. Plant breeding for monocultures has focused on maximizing yield in single-species stands, leading to highly productive yet specialized genotypes. However, indications suggest that these genotypes are not the best adapted to intercropping systems. Re-designing breeding programs to accommodate inter-specific interactions and compatibilities, with potentially multiple different intercropping partners, is certainly challenging, but recent technological advances offer novel solutions. We identify a number of such technology-driven directions, either ideotype-driven (i.e., "trait-based" breeding) or quantitative genetics-driven (i.e., "product-based" breeding). For ideotype breeding, plant growth modeling can help predict plant traits that affect both inter- and intraspecific interactions and their influence on crop performance. Quantitative breeding approaches, on the other hand, estimate breeding values of component crops without necessarily understanding the underlying mechanisms. We argue that a combined approach, for example, integrating plant growth modeling with genomic-assisted selection and indirect genetic effects, may offer the best chance to bridge the gap between current monoculture breeding programs and the more integrated and diverse breeding programs of the future.

14.
J Anim Sci ; 99(8)2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34223907

RESUMO

Breeding programs aiming to improve the performance of crossbreds may benefit from genomic prediction of crossbred (CB) performance for purebred (PB) selection candidates. In this review, we compared genomic prediction strategies that differed in 1) the genomic prediction model used or 2) the data used in the reference population. We found 27 unique studies, two of which used deterministic simulation, 11 used stochastic simulation, and 14 real data. Differences in accuracy and response to selection between strategies depended on i) the value of the purebred crossbred genetic correlation (rpc), ii) the genetic distance between the parental lines, iii) the size of PB and CB reference populations, and iv) the relatedness of these reference populations to the selection candidates. In studies where a PB reference population was used, the use of a dominance model yielded accuracies that were equal to or higher than those of additive models. When rpc was lower than ~0.8, and was caused mainly by G × E, it was beneficial to create a reference population of PB animals that are tested in a CB environment. In general, the benefit of collecting CB information increased with decreasing rpc. For a given rpc, the benefit of collecting CB information increased with increasing size of the reference populations. Collecting CB information was not beneficial when rpc was higher than ~0.9, especially when the reference populations were small. Collecting only phenotypes of CB animals may slightly improve accuracy and response to selection, but requires that the pedigree is known. It is, therefore, advisable to genotype these CB animals as well. Finally, considering the breed-origin of alleles allows for modeling breed-specific effects in the CB, but this did not always lead to higher accuracies. Our review shows that the differences in accuracy and response to selection between strategies depend on several factors. One of the most important factors is rpc, and we, therefore, recommend to obtain accurate estimates of rpc of all breeding goal traits. Furthermore, knowledge about the importance of components of rpc (i.e., dominance, epistasis, and G × E) can help breeders to decide which model to use, and whether to collect data on animals in a CB environment. Future research should focus on the development of a tool that predicts accuracy and response to selection from scenario specific parameters.


Assuntos
Genômica , Modelos Genéticos , Alelos , Animais , Coleta de Dados , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
15.
Genes (Basel) ; 12(6)2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207101

RESUMO

Inbreeding depression has been widely documented for livestock and other animal and plant populations. Inbreeding is generally expected to have a stronger unfavorable effect on fitness traits than on other traits. Traditionally, the degree of inbreeding depression in livestock has been estimated as the slope of the linear regression of phenotypic values on pedigree-based inbreeding coefficients. With the increasing availability of SNP-data, pedigree inbreeding can now be replaced by SNP-based measures. We performed a meta-analysis of 154 studies, published from 1990 to 2020 on seven livestock species, and compared the degree of inbreeding depression (1) across different trait groups, and (2) across different pedigree-based and SNP-based measures of inbreeding. Across all studies and traits, a 1% increase in pedigree inbreeding was associated with a median decrease in phenotypic value of 0.13% of a trait's mean, or 0.59% of a trait's standard deviation. Inbreeding had an unfavorable effect on all sorts of traits and there was no evidence for a stronger effect on primary fitness traits (e.g., reproduction/survival traits) than on other traits (e.g., production traits or morphological traits). p-values of inbreeding depression estimates were smaller for SNP-based inbreeding measures than for pedigree inbreeding, suggesting more power for SNP-based measures. There were no consistent differences in p-values for percentage of homozygous SNPs, inbreeding based on runs of homozygosity (ROH) or inbreeding based on a genomic relationship matrix. The number of studies that directly compares these different measures, however, is limited and comparisons are furthermore complicated by differences in scale and arbitrary definitions of particularly ROH-based inbreeding. To facilitate comparisons across studies in future, we provide the dataset with inbreeding depression estimates of 154 studies and stress the importance of always reporting detailed information (on traits, inbreeding coefficients, and models used) along with inbreeding depression estimates.


Assuntos
Aptidão Genética , Endogamia/métodos , Gado/genética , Animais , Homozigoto , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Característica Quantitativa Herdável
16.
J Anim Breed Genet ; 138(6): 629-642, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34105197

RESUMO

The purpose of this study was to investigate the origin of the genetic variation in the prevalence of bovine digital dermatitis (DD) by comparing a genetic analysis of infection events to a genetic analysis of disease status. DD is an important endemic infectious disease affecting the claws of cattle. For disease status, we analysed binary data on individual disease status (0,1; indicating being free versus infected), whereas for infections, we analysed binary data on disease transmission events (1,0; indicating becoming infected or not). The analyses of the two traits were compared using cross-validation. The analysis of disease status captures a combination of genetic variation in disease susceptibility and the ability of individuals to recover, whereas the analysis of infections captures genetic variation in susceptibility only. Estimated genetic variances for both traits indicated substantial genetic variation. The GEBV for disease status and infections correlated with only 0.60, indicating that both models indeed capture distinct information. Together, these results suggest the presence of genetic variation not only in disease susceptibility, but also in the ability of individuals to recover from DD. We argue that the presence of genetic variation in recovery implies that breeders should distinguish between infected individuals versus infectious individuals. This is because epidemiological theory shows that selection for recovery is effective only when it targets recovery from being infectious.


Assuntos
Doenças dos Bovinos , Doenças Transmissíveis , Dermatite Digital , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/genética , Doenças Transmissíveis/veterinária , Dermatite Digital/genética , Variação Genética , Fenótipo
17.
Genetics ; 217(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33734349

RESUMO

Genetic selection for improved disease resistance is an important part of strategies to combat infectious diseases in agriculture. Quantitative genetic analyses of binary disease status, however, indicate low heritability for most diseases, which restricts the rate of genetic reduction in disease prevalence. Moreover, the common liability threshold model suggests that eradication of an infectious disease via genetic selection is impossible because the observed-scale heritability goes to zero when the prevalence approaches zero. From infectious disease epidemiology, however, we know that eradication of infectious diseases is possible, both in theory and practice, because of positive feedback mechanisms leading to the phenomenon known as herd immunity. The common quantitative genetic models, however, ignore these feedback mechanisms. Here, we integrate quantitative genetic analysis of binary disease status with epidemiological models of transmission, aiming to identify the potential response to selection for reducing the prevalence of endemic infectious diseases. The results show that typical heritability values of binary disease status correspond to a very substantial genetic variation in disease susceptibility among individuals. Moreover, our results show that eradication of infectious diseases by genetic selection is possible in principle. These findings strongly disagree with predictions based on common quantitative genetic models, which ignore the positive feedback effects that occur when reducing the transmission of infectious diseases. Those feedback effects are a specific kind of Indirect Genetic Effects; they contribute substantially to the response to selection and the development of herd immunity (i.e., an effective reproduction ratio less than one).


Assuntos
Doenças Transmissíveis/genética , Resistência à Doença , Gado/genética , Modelos Genéticos , Seleção Genética , Animais , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/veterinária , Predisposição Genética para Doença , Variação Genética , Imunidade Coletiva , Prevalência , Característica Quantitativa Herdável
18.
Genet Sel Evol ; 53(1): 10, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33541267

RESUMO

BACKGROUND: The genetic correlation between purebred and crossbred performance ([Formula: see text]) is an important parameter in pig and poultry breeding, because response to selection in crossbred performance depends on the value of [Formula: see text] when selection is based on purebred (PB) performance. The value of [Formula: see text] can be substantially lower than 1, which is partly due to differences in allele frequencies between parental lines when non-additive genetic effects are present. This relationship between [Formula: see text] and parental allele frequencies suggests that [Formula: see text] can be expressed as a function of genetic parameters for the trait in the parental lines. In this study, we derived expressions for [Formula: see text] based on genetic variances within, and the genetic covariance between parental lines. It is important to note that the variance components used in our expressions are not the components that are typically estimated in empirical data. The expressions were derived for a genetic model with additive and dominance effects (D), and additive and epistatic additive-by-additive effects (EAA). We validated our expressions using simulations of purebred parental lines and their crosses, where the parental lines were either selected or not. Finally, using these simulations, we investigated the value of [Formula: see text] for genetic models with both dominance and epistasis or with other types of epistasis, for which expressions could not be derived. RESULTS: Our simulations show that when non-additive effects are present, [Formula: see text] decreases with increasing differences in allele frequencies between the parental lines. Genetic models that involve dominance result in lower values of [Formula: see text] than genetic models that involve epistasis only. Using information of parental lines only, our expressions provide exact estimates of [Formula: see text] for models D and EAA, and accurate upper and lower bounds of [Formula: see text] for two other genetic models. CONCLUSION: This work lays the foundation to enable estimation of [Formula: see text] from information collected in PB parental lines only.


Assuntos
Bovinos/genética , Variação Genética , Hibridização Genética , Endogamia , Modelos Genéticos , Animais , Epistasia Genética , Frequência do Gene
19.
Genet Sel Evol ; 52(1): 65, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33158416

RESUMO

BACKGROUND: In pig and poultry breeding, the objective is to improve the performance of crossbred production animals, while selection takes place in the purebred parent lines. One way to achieve this is to use genomic prediction with a crossbred reference population. A crossbred reference population benefits from expressing the breeding goal trait but suffers from a lower genetic relatedness with the purebred selection candidates than a purebred reference population. Our aim was to investigate the benefit of using a crossbred reference population for genomic prediction of crossbred performance for: (1) different levels of relatedness between the crossbred reference population and purebred selection candidates, (2) different levels of the purebred-crossbred correlation, and (3) different reference population sizes. We simulated a crossbred breeding program with 0, 1 or 2 multiplication steps to generate the crossbreds, and compared the accuracy of genomic prediction of crossbred performance in one generation using either a purebred or a crossbred reference population. For each scenario, we investigated the empirical accuracy based on simulation and the predicted accuracy based on the estimated effective number of independent chromosome segments between the reference animals and selection candidates. RESULTS: When the purebred-crossbred correlation was 0.75, the accuracy was highest for a two-way crossbred reference population but similar for purebred and four-way crossbred reference populations, for all reference population sizes. When the purebred-crossbred correlation was 0.5, a purebred reference population always resulted in the lowest accuracy. Among the different crossbred reference populations, the accuracy was slightly lower when more multiplication steps were used to create the crossbreds. In general, the benefit of crossbred reference populations increased when the size of the reference population increased. All predicted accuracies overestimated their corresponding empirical accuracies, but the different scenarios were ranked accurately when the reference population was large. CONCLUSIONS: The benefit of a crossbred reference population becomes larger when the crossbred population is more related to the purebred selection candidates, when the purebred-crossbred correlation is lower, and when the reference population is larger. The purebred-crossbred correlation and reference population size interact with each other with respect to their impact on the accuracy of genomic estimated breeding values.


Assuntos
Estudo de Associação Genômica Ampla/normas , Hibridização Genética , Modelos Genéticos , Aves Domésticas/genética , Locos de Características Quantitativas , Suínos/genética , Animais , Cromossomos/genética , Feminino , Marcadores Genéticos , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/veterinária , Masculino , Linhagem , Polimorfismo Genético , Padrões de Referência
20.
Genet Sel Evol ; 52(1): 64, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115403

RESUMO

BACKGROUND: Inbreeding depression refers to the decrease in mean performance due to inbreeding. Inbreeding depression is caused by an increase in homozygosity and reduced expression of (on average) favourable dominance effects. Dominance effects and allele frequencies differ across loci, and consequently inbreeding depression is expected to differ along the genome. In this study, we investigated differences in inbreeding depression across the genome of Dutch Holstein Friesian cattle, by estimating dominance effects and effects of regions of homozygosity (ROH). METHODS: Genotype (75 k) and phenotype data of 38,792 cows were used. For nine yield, fertility and udder health traits, GREML models were run to estimate genome-wide inbreeding depression and estimate additive, dominance and ROH variance components. For this purpose, we introduced a ROH-based relationship matrix. Additive, dominance and ROH effects per SNP were obtained through back-solving. In addition, a single SNP GWAS was performed to identify significant additive, dominance or ROH associations. RESULTS: Genome-wide inbreeding depression was observed for all yield, fertility and udder health traits. For example, a 1% increase in genome-wide homozygosity was associated with a decrease in 305-d milk yield of approximately 99 kg. For yield traits only, including dominance and ROH effects in the GREML model resulted in a better fit (P < 0.05) than a model with only additive effects. After correcting for the effect of genome-wide homozygosity, dominance and ROH variance explained less than 1% of the phenotypic variance for all traits. Furthermore, dominance and ROH effects were distributed evenly along the genome. The most notable region with a favourable dominance effect for yield traits was on chromosome 5, but overall few regions with large favourable dominance effects and significant dominance associations were detected. No significant ROH-associations were found. CONCLUSIONS: Inbreeding depression was distributed quite equally along the genome and was well captured by genome-wide homozygosity. These findings suggest that, based on 75 k SNP data, there is little benefit of accounting for region-specific inbreeding depression in selection schemes.


Assuntos
Bovinos/genética , Depressão por Endogamia , Polimorfismo de Nucleotídeo Único , Animais , Bovinos/fisiologia , Genes Dominantes , Carga Genética , Homozigoto , Leite/normas , Linhagem , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...