Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
2.
Nat Med ; 30(9): 2473-2479, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38907160

RESUMO

Sanfilippo syndrome is a fatal childhood neurodegenerative disorder involving neuroinflammation among multiple pathologies. We hypothesized that anakinra, a recombinant interleukin-1 receptor antagonist, could improve neurobehavioral and functional symptoms owing to its capacity to treat neuroinflammation. This phase 1/2 trial aimed to test the safety, tolerability and effects of anakinra on neurobehavioral, functional and quality-of-life outcomes in patients and their caregivers. The primary outcome was the percent of participants requiring a dose increase at week 8 or week 16. Secondary efficacy outcomes included a multi-domain responder index (MDRI). Twenty-three participants (6-26 years of age) were enrolled. Twenty continued treatment to week 8, and 15 (75%) required an increased dose at week 8 or week 16. There was an improvement in at least one domain in the MDRI in 18 of 21 (86%) at week 8 and in 15 of 16 (94%) at week 36. Seven participants withdrew (intolerability of daily injections and lost to follow-up) before week 36. Adverse events occurred in 22 of 23 (96%) participants, most commonly mild injection site reactions. No serious adverse events were related to anakinra. In conclusion, anakinra was safe and associated with improved neurobehavioral and functional outcomes, supporting continued investigation of anakinra in Sanfilippo syndrome and other mucopolysaccharidoses. ClinicalTrials.gov identifier: NCT04018755 .


Assuntos
Proteína Antagonista do Receptor de Interleucina 1 , Mucopolissacaridose III , Humanos , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Proteína Antagonista do Receptor de Interleucina 1/efeitos adversos , Criança , Adolescente , Masculino , Adulto , Feminino , Adulto Jovem , Mucopolissacaridose III/tratamento farmacológico , Mucopolissacaridose III/patologia , Qualidade de Vida , Resultado do Tratamento
3.
Alzheimers Dement ; 20(3): 2240-2261, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170841

RESUMO

INTRODUCTION: The pace of innovation has accelerated in virtually every area of tau research in just the past few years. METHODS: In February 2022, leading international tau experts convened to share selected highlights of this work during Tau 2022, the second international tau conference co-organized and co-sponsored by the Alzheimer's Association, CurePSP, and the Rainwater Charitable Foundation. RESULTS: Representing academia, industry, and the philanthropic sector, presenters joined more than 1700 registered attendees from 59 countries, spanning six continents, to share recent advances and exciting new directions in tau research. DISCUSSION: The virtual meeting provided an opportunity to foster cross-sector collaboration and partnerships as well as a forum for updating colleagues on research-advancing tools and programs that are steadily moving the field forward.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Proteínas tau
5.
J Am Soc Mass Spectrom ; 34(12): 2739-2747, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37936057

RESUMO

Parkinson's disease, a neurodegenerative disease that affects 15 million people worldwide, is characterized by deposition of α-synuclein into Lewy Bodies in brain neurons. Although this disease is prevalent worldwide, a therapy or cure has yet to be found. Several small compounds have been reported to disrupt fibril formation. Among these compounds is a molecular tweezer known as CLR01 that targets lysine and arginine residues. This study aims to characterize how CLR01 interacts with various proteoforms of α-synuclein and how the structure of α-synuclein is subsequently altered. Native mass spectrometry (nMS) measurements of α-synuclein/CLR01 complexes reveal that multiple CLR01 molecules can bind to α-synuclein proteoforms such as α-synuclein phosphorylated at Ser-129 and α-synuclein bound with copper and manganese ions. The binding of one CLR01 molecule shifts the ability for α-synuclein to bind other ligands. Electron capture dissociation (ECD) with Fourier transform-ion cyclotron resonance (FT-ICR) top-down (TD) mass spectrometry of α-synuclein/CLR01 complexes pinpoints the locations of the modifications on each proteoform and reveals that CLR01 binds to the N-terminal region of α-synuclein. CLR01 binding compacts the gas-phase structure of α-synuclein, as shown by ion mobility-mass spectrometry (IM-MS). These data suggest that when multiple CLR01 molecules bind, the N-terminus of α-synuclein shifts toward a more compact state. This compaction suggests a mechanism for CLR01 halting the formation of oligomers and fibrils involved in many neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , alfa-Sinucleína/química , Doenças Neurodegenerativas/metabolismo , Espectrometria de Massas , Doença de Parkinson/metabolismo , Encéfalo/metabolismo
6.
J Am Soc Mass Spectrom ; 34(10): 2066-2086, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37607351

RESUMO

Neurodegenerative proteinopathies are characterized by formation and deposition of misfolded, aggregated proteins in the nervous system leading to neuronal dysfunction and death. It is widely believed that metastable oligomers of the offending proteins, preceding the fibrillar aggregates found in the tissue, are the proximal neurotoxins. There are currently almost no disease-modifying therapies for these diseases despite an active pipeline of preclinical development and clinical trials for over two decades, largely because studying the metastable oligomers and their interaction with potential therapeutics is notoriously difficult. Mass spectrometry (MS) is a powerful analytical tool for structural investigation of proteins, including protein-protein and protein-ligand interactions. Specific MS tools have been useful in determining the composition and conformation of abnormal protein oligomers involved in proteinopathies and the way they interact with drug candidates. Here, we analyze critically the utilization of ion-mobility spectroscopy-MS (IM-MS) and electron-capture dissociation (ECD) MS/MS for analyzing the oligomerization and conformation of multiple amyloidogenic proteins. We also discuss IM-MS investigation of their interaction with two classes of compounds developed by our group over the last two decades: C-terminal fragments derived from the 42-residue form of amyloid ß-protein (Aß42) and molecular tweezers. Finally, we review the utilization of ECD-MS/MS for elucidating the binding sites of the ligands on multiple proteins. These approaches are readily applicable to future studies addressing similar questions and hold promise for facilitating the development of successful disease-modifying drugs against neurodegenerative proteinopathies.


Assuntos
Proteínas Amiloidogênicas , Deficiências na Proteostase , Humanos , Espectrometria de Massas em Tandem , Peptídeos beta-Amiloides/química , Sítios de Ligação
7.
Acta Neuropathol ; 145(5): 515-540, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012443

RESUMO

Extracellular vesicles (EVs), including exosomes, microvesicles, and oncosomes, are nano-sized particles enclosed by a lipid bilayer. EVs are released by virtually all eukaryotic cells and have been shown to contribute to intercellular communication by transporting proteins, lipids, and nucleic acids. In the context of neurodegenerative diseases, EVs may carry toxic, misfolded forms of amyloidogenic proteins and facilitate their spread to recipient cells in the central nervous system (CNS). CNS-originating EVs can cross the blood-brain barrier into the bloodstream and may be found in other body fluids, including saliva, tears, and urine. EVs originating in the CNS represent an attractive source of biomarkers for neurodegenerative diseases, because they contain cell- and cell state-specific biological materials. In recent years, multiple papers have reported the use of this strategy for identification and quantitation of biomarkers for neurodegenerative diseases, including Parkinson's disease and atypical parkinsonian disorders. However, certain technical issues have yet to be standardized, such as the best surface markers for isolation of cell type-specific EVs and validating the cellular origin of the EVs. Here, we review recent research using CNS-originating EVs for biomarker studies, primarily in parkinsonian disorders, highlight technical challenges, and propose strategies for overcoming them.


Assuntos
Exossomos , Vesículas Extracelulares , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Vesículas Extracelulares/metabolismo , Sistema Nervoso Central/metabolismo , Exossomos/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Biomarcadores/metabolismo
10.
ACS Chem Neurosci ; 14(7): 1238-1248, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36920792

RESUMO

Synucleinopathies are a group of neurodegenerative diseases including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). These diseases are characterized by the aggregation and deposition of α-synuclein (α-syn) in Lewy bodies (LBs) in PD and DLB or as glial cytoplasmic inclusions in MSA. In healthy brains, only ∼4% of α-syn is phosphorylated at Ser129 (pS129-α-syn), whereas >90% pS129-α-syn may be found in LBs, suggesting that pS129-α-syn could be a useful biomarker for synucleinopathies. However, a widely available, robust, sensitive, and reproducible method for measuring pS129-α-syn in biological fluids is currently missing. We used Meso Scale Discovery (MSD)'s electrochemiluminescence platform to create a new assay for sensitive detection of pS129-α-syn. We evaluated several combinations of capture and detection antibodies and used semisynthetic pS129-α-syn as a standard for the assay at a concentration range from 0.5 to 6.6 × 104 pg/mL. Using the antibody EP1536Y for capture and an anti-human α-syn antibody (MSD) for detection was the best combination in terms of assay sensitivity, specificity, and reproducibility. We tested the utility of the assay for the detection and quantification of pS129-α-syn in human cerebrospinal fluid, serum, plasma, saliva, and CNS-originating small extracellular vesicles, as well as in mouse brain lysates. Our data suggest that the assay can become a widely used method for detecting pS129-α-syn in biomedical studies including when only a limited volume of sample is available and high sensitivity is required, offering new opportunities for diagnostic biomarkers, monitoring disease progression, and quantifying outcome measures in clinical trials.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Sinucleinopatias , Camundongos , Animais , Humanos , alfa-Sinucleína/líquido cefalorraquidiano , Reprodutibilidade dos Testes , Doença de Parkinson/diagnóstico , Atrofia de Múltiplos Sistemas/diagnóstico , Anticorpos , Ensaio de Imunoadsorção Enzimática
11.
Methods Mol Biol ; 2551: 125-145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36310201

RESUMO

Two fluorescence resonance energy transfer (FRET)-based biosensor cell lines developed several years ago by the Diamond group (University of Texas, Southwestern) have allowed convenient, sensitive, and specific measurement of the intracellular aggregation of tau and α-synuclein following the addition of oligomer or small-aggregate "seeds" of these proteins from various sources, and an advancement relative to similar single-fluorophore systems. These biosensor cell lines allow researchers to both visualize the intracellular aggregates of tau or α-synuclein and measure intracellular aggregation with high sensitivity using a FRET signal in flow cytometry. Here we provide detailed protocols for generating seeds, culturing the biosensor cells, measuring intracellular aggregates by flow cytometry, and analyzing the results and discuss the utility of the technique with the aim of characterizing factors involved in the regulation of intracellular tau and α-synuclein aggregation.


Assuntos
Técnicas Biossensoriais , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas tau/metabolismo , Citometria de Fluxo/métodos
12.
Pharmacol Rev ; 75(2): 263-308, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549866

RESUMO

Lysine-selective molecular tweezers (MTs) are supramolecular host molecules displaying a remarkably broad spectrum of biologic activities. MTs act as inhibitors of the self-assembly and toxicity of amyloidogenic proteins using a unique mechanism. They destroy viral membranes and inhibit infection by enveloped viruses, such as HIV-1 and SARS-CoV-2, by mechanisms unrelated to their action on protein self-assembly. They also disrupt biofilm of Gram-positive bacteria. The efficacy and safety of MTs have been demonstrated in vitro, in cell culture, and in vivo, suggesting that these versatile compounds are attractive therapeutic candidates for various diseases, infections, and injuries. A lead compound called CLR01 has been shown to inhibit the aggregation of various amyloidogenic proteins, facilitate their clearance in vivo, prevent infection by multiple viruses, display potent anti-biofilm activity, and have a high safety margin in animal models. The inhibitory effect of CLR01 against amyloidogenic proteins is highly specific to abnormal self-assembly of amyloidogenic proteins with no disruption of normal mammalian biologic processes at the doses needed for inhibition. Therapeutic effects of CLR01 have been demonstrated in animal models of proteinopathies, lysosomal-storage diseases, and spinal-cord injury. Here we review the activity and mechanisms of action of these intriguing compounds and discuss future research directions. SIGNIFICANCE STATEMENT: Molecular tweezers are supramolecular host molecules with broad biological applications, including inhibition of abnormal protein aggregation, facilitation of lysosomal clearance of toxic aggregates, disruption of viral membranes, and interference of biofilm formation by Gram-positive bacteria. This review discusses the molecular and cellular mechanisms of action of the molecular tweezers, including the discovery of distinct mechanisms acting in vitro and in vivo, and the application of these compounds in multiple preclinical disease models.


Assuntos
Produtos Biológicos , COVID-19 , Animais , Organofosfatos/farmacologia , SARS-CoV-2 , Proteínas Amiloidogênicas , Mamíferos
17.
Mov Disord ; 37(4): 778-789, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35040506

RESUMO

BACKGROUND: Multiple system atrophy (MSA) is a fatal neurodegenerative disease characterized by the aggregation of α-synuclein in glia and neurons. Sirolimus (rapamycin) is an mTOR inhibitor that promotes α-synuclein autophagy and reduces its associated neurotoxicity in preclinical models. OBJECTIVE: To investigate the efficacy and safety of sirolimus in patients with MSA using a futility design. We also analyzed 1-year biomarker trajectories in the trial participants. METHODS: Randomized, double-blind, parallel group, placebo-controlled clinical trial at the New York University of patients with probable MSA randomly assigned (3:1) to sirolimus (2-6 mg daily) for 48 weeks or placebo. Primary endpoint was change in the Unified MSA Rating Scale (UMSARS) total score from baseline to 48 weeks. (ClinicalTrials.gov NCT03589976). RESULTS: The trial was stopped after a pre-planned interim analysis met futility criteria. Between August 15, 2018 and November 15, 2020, 54 participants were screened, and 47 enrolled and randomly assigned (35 sirolimus, 12 placebo). Of those randomized, 34 were included in the intention-to-treat analysis. There was no difference in change from baseline to week 48 between the sirolimus and placebo in UMSARS total score (mean difference, 2.66; 95% CI, -7.35-6.91; P = 0.648). There was no difference in UMSARS-1 and UMSARS-2 scores either. UMSARS scores changes were similar to those reported in natural history studies. Neuroimaging and blood biomarker results were similar in the sirolimus and placebo groups. Adverse events were more frequent with sirolimus. Analysis of 1-year biomarker trajectories in all participants showed that increases in blood neurofilament light chain (NfL) and reductions in whole brain volume correlated best with UMSARS progression. CONCLUSIONS: Sirolimus for 48 weeks was futile to slow the progression of MSA and had no effect on biomarkers compared to placebo. One-year change in blood NfL and whole brain atrophy are promising biomarkers of disease progression for future clinical trials. © 2022 International Parkinson and Movement Disorder Society.


Assuntos
Atrofia de Múltiplos Sistemas , alfa-Sinucleína , Método Duplo-Cego , Humanos , Futilidade Médica , Atrofia de Múltiplos Sistemas/tratamento farmacológico , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR , Resultado do Tratamento
18.
Protein Sci ; 31(3): 613-627, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34902187

RESUMO

Different tauopathies are characterized by the isoform-specific composition of the aggregates found in the brain and by structurally distinct tau strains. Although tau oligomers have been implicated as important neurotoxic species, little is known about how the primary structures of the six human tau isoforms affect tau oligomerization because the oligomers are metastable and difficult to analyze. To address this knowledge gap, here, we analyzed the initial oligomers formed by the six tau isoforms in the absence of posttranslational modifications or other manipulations using dot blots probed by an oligomer-specific antibody, native-PAGE/western blots, photo-induced cross-linking of unmodified proteins, mass-spectrometry, and ion-mobility spectroscopy. We found that under these conditions, three-repeat (3R) isoforms are more prone than four-repeat (4R) isoforms to form oligomers. We also tested whether known inhibitors of tau aggregation affect its oligomerization using three small molecules representing different classes of tau aggregation inhibitors, Methylene Blue (MB), the molecular tweezer CLR01, and the all-D peptide TLKIVW, for their ability to inhibit or modulate the oligomerization of the six tau isoforms. Unlike their reported inhibitory effect on tau fibrillation, the inhibitors had little or no effect on the initial oligomerization. Our study provides novel insight into the primary-quaternary structure relationship of human tau and suggests that 3R-tau oligomers may be an important target for future development of compounds targeting pathological tau assemblies.


Assuntos
Tauopatias , Proteínas tau , Anticorpos/metabolismo , Encéfalo/metabolismo , Humanos , Isoformas de Proteínas/química , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/metabolismo
19.
J Biol Chem ; 298(1): 101478, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896392

RESUMO

Aptamers are oligonucleotides selected from large pools of random sequences based on their affinity for bioactive molecules and are used in similar ways to antibodies. Aptamers provide several advantages over antibodies, including their small size, facile, large-scale chemical synthesis, high stability, and low immunogenicity. Amyloidogenic proteins, whose aggregation is relevant to neurodegenerative diseases, such as Alzheimer's, Parkinson's, and prion diseases, are among the most challenging targets for aptamer development due to their conformational instability and heterogeneity, the same characteristics that make drug development against amyloidogenic proteins difficult. Recently, chemical tethering of aptagens (equivalent to antigens) and advances in high-throughput sequencing-based analysis have been used to overcome some of these challenges. In addition, internalization technologies using fusion to cellular receptors and extracellular vesicles have facilitated central nervous system (CNS) aptamer delivery. In view of the development of these techniques and resources, here we review antiamyloid aptamers, highlighting preclinical application to CNS therapy.


Assuntos
Proteínas Amiloidogênicas , Aptâmeros de Nucleotídeos , Doenças Neurodegenerativas , Doenças Priônicas , Proteínas Amiloidogênicas/metabolismo , Animais , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/uso terapêutico , Sistema Nervoso Central/metabolismo , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doenças Priônicas/tratamento farmacológico , Técnica de Seleção de Aptâmeros/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...