Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37951295

RESUMO

Climate warming and summer droughts alter soil microbial activity, affecting greenhouse gas (GHG) emissions in Arctic and alpine regions. However, the long-term effects of warming, and implications for future microbial resilience, are poorly understood. Using one alpine and three Arctic soils subjected to in situ long-term experimental warming, we simulated drought in laboratory incubations to test how microbial functional-gene abundance affects fluxes in three GHGs: carbon dioxide, methane, and nitrous oxide. We found that responses of functional gene abundances to drought and warming are strongly associated with vegetation type and soil carbon. Our sites ranged from a wet, forb dominated, soil carbon-rich systems to a drier, soil carbon-poor alpine site. Resilience of functional gene abundances, and in turn methane and carbon dioxide fluxes, was lower in the wetter, carbon-rich systems. However, we did not detect an effect of drought or warming on nitrous oxide fluxes. All gene-GHG relationships were modified by vegetation type, with stronger effects being observed in wetter, forb-rich soils. These results suggest that impacts of warming and drought on GHG emissions are linked to a complex set of microbial gene abundances and may be habitat-specific.


Assuntos
Gases de Efeito Estufa , Secas , Dióxido de Carbono/análise , Óxido Nitroso/análise , Solo , Metano/análise , Genes Microbianos
2.
Ecol Evol ; 12(6): e9028, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35784030

RESUMO

Temperatures over the Arctic region are increasing at three times the rate of the global average. Consequently, Arctic vegetation is changing and trees are encroaching into the tundra. In this study, we examine the establishment and growth of mountain birch (Betula pubescens ssp. tortuosa), which forms the treeline in subarctic Europe, and its impact on community composition across the treeline ecotone nearby Abisko, Sweden. Birch advancement along elevational gradients was studied by comparing data collected in 2016 with data collected 10 and 15 years previously. Species identity, cover, and phylogenetic relatedness were used to assess the impact of birch encroachment on community composition. Our results show that birch occurrence above the treeline did not affect plant community composition, probably owing to the observed lack of significant growth due to herbivore browsing, nitrogen limitation, or a reduction in snow cover. Independent of birch performance, the tundra community structure shifted toward a novel community dissimilar from the forest plant community found below the treeline. Taken together, our findings are explained by species-specific responses to climate change, rather than by a linear forest advance. Future treeline advancements are likely more restricted than previously expected.

3.
Glob Chang Biol ; 28(10): 3411-3425, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35285570

RESUMO

In Arctic regions, thawing permafrost soils are projected to release 50 to 250 Gt of carbon by 2100. This data is mostly derived from carbon-rich wetlands, although 71% of this carbon pool is stored in faster-thawing mineral soils, where ecosystems close to the outer boundaries of permafrost regions are especially vulnerable. Although extensive data exists from currently thawing sites and short-term thawing experiments, investigations of the long-term changes following final thaw and co-occurring drainage are scarce. Here we show ecosystem changes at two comparable tussock tundra sites with distinct permafrost thaw histories, representing 15 and 25 years of natural drainage, that resulted in a 10-fold decrease in CH4 emissions (3.2 ± 2.2 vs. 0.3 ± 0.4 mg C-CH4  m-2  day-1 ), while CO2 emissions were comparable. These data extend the time perspective from earlier studies based on short-term experimental drainage. The overall microbial community structures did not differ significantly between sites, although the drier top soils at the most advanced site led to a loss of methanogens and their syntrophic partners in surface layers while the abundance of methanotrophs remained unchanged. The resulting deeper aeration zones likely increased CH4 oxidation due to the longer residence time of CH4 in the oxidation zone, while the observed loss of aerenchyma plants reduced CH4 diffusion from deeper soil layers directly to the atmosphere. Our findings highlight the importance of including hydrological, vegetation and microbial specific responses when studying long-term effects of climate change on CH4 emissions and underscores the need for data from different soil types and thaw histories.


Assuntos
Microbiota , Pergelissolo , Regiões Árticas , Carbono , Metano , Pergelissolo/química , Solo/química
4.
Mycorrhiza ; 32(3-4): 305-313, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35307782

RESUMO

The soil nitrogen (N) cycle in cold terrestrial ecosystems is slow and organically bound N is an important source of N for plants in these ecosystems. Many plant species can take up free amino acids from these infertile soils, either directly or indirectly via their mycorrhizal fungi. We hypothesized that plant community changes and local plant community differences will alter the soil free amino acid pool and composition; and that long-term warming could enhance this effect. To test this, we studied the composition of extractable free amino acids at five separate heath, meadow, and bog locations in subarctic and alpine Scandinavia, with long-term (13 to 24 years) warming manipulations. The plant communities all included a mixture of ecto-, ericoid-, and arbuscular mycorrhizal plant species. Vegetation dominated by grasses and forbs with arbuscular and non-mycorrhizal associations showed highest soil free amino acid content, distinguishing them from the sites dominated by shrubs with ecto- and ericoid-mycorrhizal associations. Warming increased shrub and decreased moss cover at two sites, and by using redundancy analysis, we found that altered soil free amino acid composition was related to this plant cover change. From this, we conclude that the mycorrhizal type is important in controlling soil N cycling and that expansion of shrubs with ectomycorrhiza (and to some extent ericoid mycorrhiza) can help retain N within the ecosystems by tightening the N cycle.


Assuntos
Micorrizas , Aminoácidos/metabolismo , Ecossistema , Micorrizas/metabolismo , Plantas/microbiologia , Solo/química , Microbiologia do Solo , Tundra
5.
Sci Total Environ ; 770: 144793, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33497901

RESUMO

Vascular and nonvascular plants are affected by environmental factors determining their distribution and shaping their diversity and cover. Despite the cryptogam commonness in Arctic communities, previous studies have often focused on limited number of factors and their impact on only selected species of vascular plants or cryptogams. Our study aimed to investigate in detail the differences in species diversity and cover of cryptogams and vascular plants in the glacier forelands and mature tundra on Svalbard. Furthermore, we determined the biotic and abiotic factors that affected diversity, cover and distribution of cryptogam and vascular plant species. In 2017, we established 201 plots in eight locations (each including habitat type of foreland and mature tundra) and surveyed species abundance, sampled soils and environmental data. Results revealed that diversity and cover of analysed groups differed significantly between locations and habitat types, except for cryptogam cover in mature tundra in terms of location. Distance to the glacier terminus, slope, soil conductivity, nutrient content, and clay content impacted both plant groups' diversity. In contrast, distance to the glacier terminus, nutrient content and soil pH affected their cover. In addition, for cryptogam diversity and cover, foreland location and vascular plant cover were also important, while for vascular plant cover time elapsed after glacier retreat was significant. Distribution of both groups' species in forelands was associated with time elapsed after glacier retreat, soil pH, and nutrient contents. Soil texture and distance to the glacier terminus additionally influenced cryptogam distribution. The positive impact of vascular plants on cryptogam diversity and cover indicates complex relationships between these groups, even in forelands' relatively simple communities. As the cryptogam diversity in the polar areas is high but still largely unknown, future studies on species ecology and climate change impact on vegetation should consider both vascular plants and cryptogams and interactions between these groups.


Assuntos
Camada de Gelo , Solo , Regiões Árticas , Ecossistema , Svalbard
6.
J Exp Bot ; 72(2): 459-475, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33068437

RESUMO

The evolutionary success of plants relies to a large extent on their extraordinary ability to adapt to changes in their environment. These adaptations require that plants balance their growth with their stress responses. Plant hormones are crucial mediators orchestrating the underlying adaptive processes. However, whether and how the growth-related hormone auxin and the stress-related hormones jasmonic acid, salicylic acid, and abscisic acid (ABA) are coordinated remains largely elusive. Here, we analyse the physiological role of AMIDASE 1 (AMI1) in Arabidopsis plant growth and its possible connection to plant adaptations to abiotic stresses. AMI1 contributes to cellular auxin homeostasis by catalysing the conversion of indole-acetamide into the major plant auxin indole-3-acetic acid. Functional impairment of AMI1 increases the plant's stress status rendering mutant plants more susceptible to abiotic stresses. Transcriptomic analysis of ami1 mutants disclosed the reprogramming of a considerable number of stress-related genes, including jasmonic acid and ABA biosynthesis genes. The ami1 mutants exhibit only moderately repressed growth but an enhanced ABA accumulation, which suggests a role for AMI1 in the crosstalk between auxin and ABA. Altogether, our results suggest that AMI1 is involved in coordinating the trade-off between plant growth and stress responses, balancing auxin and ABA homeostasis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Reguladores de Crescimento de Plantas
7.
Glob Chang Biol ; 26(11): 6616-6629, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32311220

RESUMO

Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.


Assuntos
Ecossistema , Microclima , Mudança Climática , Neve , Temperatura
8.
Glob Chang Biol ; 25(5): 1704-1716, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30806027

RESUMO

Vast amounts of carbon are bound in both active layer and permafrost soils in the Arctic. As a consequence of climate warming, the depth of the active layer is increasing in size and permafrost soils are thawing. We hypothesize that pulses of biogenic volatile organic compounds are released from the near-surface active layer during spring, and during late summer season from thawing permafrost, while the subsequent biogeochemical processes occurring in thawed soils also lead to emissions. Biogenic volatile organic compounds are reactive gases that have both negative and positive climate forcing impacts when introduced to the Arctic atmosphere, and the knowledge of their emission magnitude and pattern is necessary to construct reliable climate models. However, it is unclear how different ecosystems and environmental factors such as drainage conditions upon permafrost thaw affect the emission and compound composition. Here we show that incubations of frozen B horizon of the active layer and permafrost soils collected from a High Arctic heath and fen release a range of biogenic volatile organic compounds upon thaw and during subsequent incubation experiments at temperatures of 10°C and 20°C. Meltwater drainage in the fen soils increased emission rates nine times, while having no effect in the drier heath soils. Emissions generally increased with temperature, and emission profiles for the fen soils were dominated by benzenoids and alkanes, while benzenoids, ketones, and alcohols dominated in heath soils. Our results emphasize that future changes affecting the drainage conditions of the Arctic tundra will have a large influence on volatile emissions from thawing permafrost soils - particularly in wetland/fen areas.


Assuntos
Mudança Climática , Gases/análise , Pergelissolo/química , Compostos Orgânicos Voláteis/análise , Água/análise , Regiões Árticas , Monitoramento Ambiental , Estações do Ano , Solo/química , Tundra
9.
Nature ; 562(7725): 57-62, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30258229

RESUMO

The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature-trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.


Assuntos
Aquecimento Global , Fenômenos Fisiológicos Vegetais , Plantas/anatomia & histologia , Tundra , Biometria , Mapeamento Geográfico , Umidade , Fenótipo , Solo/química , Análise Espaço-Temporal , Temperatura , Água/análise
10.
Nat Ecol Evol ; 2(9): 1443-1448, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30013133

RESUMO

Effective societal responses to rapid climate change in the Arctic rely on an accurate representation of region-specific ecosystem properties and processes. However, this is limited by the scarcity and patchy distribution of field measurements. Here, we use a comprehensive, geo-referenced database of primary field measurements in 1,840 published studies across the Arctic to identify statistically significant spatial biases in field sampling and study citation across this globally important region. We find that 31% of all study citations are derived from sites located within 50 km of just two research sites: Toolik Lake in the USA and Abisko in Sweden. Furthermore, relatively colder, more rapidly warming and sparsely vegetated sites are under-sampled and under-recognized in terms of citations, particularly among microbiology-related studies. The poorly sampled and cited areas, mainly in the Canadian high-Arctic archipelago and the Arctic coastline of Russia, constitute a large fraction of the Arctic ice-free land area. Our results suggest that the current pattern of sampling and citation may bias the scientific consensuses that underpin attempts to accurately predict and effectively mitigate climate change in the region. Further work is required to increase both the quality and quantity of sampling, and incorporate existing literature from poorly cited areas to generate a more representative picture of Arctic climate change and its environmental impacts.


Assuntos
Mudança Climática , Regiões Árticas , Ecossistema , Viés de Seleção , Análise Espacial
11.
Ecol Evol ; 8(2): 1019-1030, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29375775

RESUMO

Mycorrhizal associations are widespread in high-latitude ecosystems and are potentially of great importance for global carbon dynamics. Although large herbivores play a key part in shaping subarctic plant communities, their impact on mycorrhizal dynamics is largely unknown. We measured extramatrical mycelial (EMM) biomass during one growing season in 16-year-old herbivore exclosures and unenclosed control plots (ambient), at three mountain birch forests and two shrub heath sites, in the Scandes forest-tundra ecotone. We also used high-throughput amplicon sequencing for taxonomic identification to investigate differences in fungal species composition. At the birch forest sites, EMM biomass was significantly higher in exclosures (1.36 ± 0.43 g C/m2) than in ambient conditions (0.66 ± 0.17 g C/m2) and was positively influenced by soil thawing degree-days. At the shrub heath sites, there was no significant effect on EMM biomass (exclosures: 0.72 ± 0.09 g C/m2; ambient plots: 1.43 ± 0.94). However, EMM biomass was negatively related to Betula nana abundance, which was greater in exclosures, suggesting that grazing affected EMM biomass positively. We found no significant treatment effects on fungal diversity but the most abundant ectomycorrhizal lineage/cortinarius, showed a near-significant positive effect of herbivore exclusion (p = .08), indicating that herbivory also affects fungal community composition. These results suggest that herbivory can influence fungal biomass in highly context-dependent ways in subarctic ecosystems. Considering the importance of root-associated fungi for ecosystem carbon balance, these findings could have far-reaching implications.

12.
J Ecol ; 105(6): 1547-1561, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29200500

RESUMO

One of the most palpable effects of warming in Arctic ecosystems is shrub expansion above the tree line. However, previous studies have found that reindeer can influence plant community responses to warming and inhibit shrubification of the tundra.We revisited grazed (ambient) and ungrazed study plots (exclosures), at the southern as well as the northern limits of the Swedish alpine region, to study long-term grazing effects and vegetation changes in response to increasing temperatures between 1995 and 2011, in two vegetation types (shrub heath and mountain birch forest).In the field layer at the shrub heath sites, evergreen dwarf shrubs had increased in cover from 26% to 49% but were unaffected by grazing. Deciduous dwarf and tall shrubs also showed significant, though smaller, increases over time. At the birch forest sites, the increase was similar for evergreen dwarf shrubs (20-48%) but deciduous tall shrubs did not show the same consistent increase over time as in the shrub heath.The cover and height of the shrub layer were significantly greater in exclosures at the shrub heath sites, but no significant treatment effects were found on species richness or diversity.July soil temperatures and growing season thawing degree days (TDD) were higher in exclosures at all but one site, and there was a significant negative correlation between mean shrub layer height and soil TDD at the shrub heath sites. Synthesis. This study shows that shrub expansion is occurring rapidly in the Scandes mountain range, both above and below the tree line. Tall, deciduous shrubs had benefitted significantly from grazing exclosure, both in terms of cover and height, which in turn lowered summer soil temperatures. However, the overriding vegetation shift across our sites was the striking increase in evergreen dwarf shrubs, which were not influenced by grazing. As the effects of an increase in evergreen dwarf shrubs and more recalcitrant plant litter may to some degree counteract some of the effects of an increase in deciduous tall shrubs, herbivore influence on shrub interactions is potentially of great importance for shaping arctic shrub expansion and its associated ecosystem effects.

13.
Ecology ; 96(8): 2064-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26405732

RESUMO

Foundation species can change plant community structure by modulating important ecological processes such as community assembly, yet this topic is poorly understood. In alpine systems, cushion plants commonly act as foundation species by ameliorating local conditions. Here, we analyze diversity patterns of species' assembly within cushions and in adjacent surrounding open substrates (83 sites across five continents) calculating floristic dissimilarity between replicate plots, and using linear models to analyze relationships between microhabitats and species diversity. Floristic dissimilarity did not change across biogeographic regions, but was consistently lower in the cushions than in the open microhabitat. Cushion plants appear to enable recruitment of many relatively stress-intolerant species that otherwise would not establish in these communities, yet the niche space constructed by cushion plants supports a more homogeneous composition of species than the niche space beyond the cushion's influence. As a result, cushion plants support higher α-diversity and a larger species pool, but harbor assemblies with lower ß-diversity than open microhabitats. We conclude that habitats with and without dominant foundation species can strongly differ in the processes that drive species recruitment, and thus the relationship between local and regional species diversity.


Assuntos
Biodiversidade , Plantas/classificação , Solo/química , Modelos Biológicos , Água
14.
Ecol Lett ; 17(2): 193-202, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24238015

RESUMO

Interactions among species determine local-scale diversity, but local interactions are thought to have minor effects at larger scales. However, quantitative comparisons of the importance of biotic interactions relative to other drivers are rarely made at larger scales. Using a data set spanning 78 sites and five continents, we assessed the relative importance of biotic interactions and climate in determining plant diversity in alpine ecosystems dominated by nurse-plant cushion species. Climate variables related with water balance showed the highest correlation with richness at the global scale. Strikingly, although the effect of cushion species on diversity was lower than that of climate, its contribution was still substantial. In particular, cushion species enhanced species richness more in systems with inherently impoverished local diversity. Nurse species appear to act as a 'safety net' sustaining diversity under harsh conditions, demonstrating that climate and species interactions should be integrated when predicting future biodiversity effects of climate change.


Assuntos
Biodiversidade , Clima , Modelos Biológicos , Plantas , Aclimatação , Altitude , Ásia , Europa (Continente) , Modelos Lineares , Nova Zelândia , América do Norte , América do Sul
15.
Ecol Lett ; 15(2): 164-75, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22136670

RESUMO

Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date.


Assuntos
Adaptação Biológica , Ecossistema , Aquecimento Global , Desenvolvimento Vegetal , Regiões Árticas , Biodiversidade , Modelos Biológicos
16.
Mycorrhiza ; 21(4): 289-96, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20680357

RESUMO

This study explores mid-alpine ectomycorrhizal communities on Salix herbacea and Salix polaris in plant communities differing in nutrient status and snow conditions. Plant species were identified by tracking roots back to above ground structures while fungal species were identified using molecular methods. The fungi were identified to 34 molecular operational taxonomic units (MOTUs)/species but species accumulation curves indicated that the communities were only partially sampled. The estimated total species richness was 49 (±9 SD) MOTUs/species. No significant ectomycorrhizal community specificity was found between the two plant species and only weak specificity between different plant communities. Furthermore, no difference in proportion of colonized root tips could be demonstrated between plant communities. However, some fungal taxa showed tendencies to associate with specific environmental conditions. Sebacinaceae, Inocybe egenula, Russula cf. emetica, and a Tomentella sp. were found in meadow communities but not in the heath communities. Sistotrema cf. alboluteum and Tomentella cf. terrestris were only found in the dry and mesic heath communities. Classifications into exploration types showed that the contact type is more abundant in the dry heath community than the other communities. Cenococcum geophilum was the most common species but Cortinarius spp., Russula spp., Tomentella spp., and Lactarius spp. were also common. This study confirms that alpine communities are rich in ectomycorrhizal fungi including species from a wide variety of fungal lineages and also show that many dominant species have wide ecological amplitude.


Assuntos
Ecossistema , Fungos/isolamento & purificação , Micorrizas/isolamento & purificação , Salix/microbiologia , Microbiologia do Solo , Fungos/classificação , Fungos/genética , Micorrizas/classificação , Micorrizas/genética , Raízes de Plantas/microbiologia , Suécia
17.
FEMS Microbiol Ecol ; 73(3): 550-62, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20550578

RESUMO

The effects of wood ash application on soil microbial processes were investigated in three drained forested peatlands, which differed in nutrient status and time since application. Measured variables included the concentrations of soil elements and phospholipid fatty acids (PLFAs), net nitrogen (N) mineralization, nitrification and denitrification enzyme activity, potential methane (CH(4)) oxidation, CH(4) production and microbial respiration kinetics. Wood ash application had a considerable influence on soil element concentrations. This mirrored a decrease in the majority of the microbial biomarkers by more than one-third in the two oligotrophic peatlands, although the microbial community composition was not altered. The decreases in PLFAs coincided with reduced net ammonification and net N mineralization. Other measured variables did not change systematically as a result of wood ash application. No significant changes in microbial biomass or processes were found in the mesotrophic peatland, possibly because too little time (1 year) had elapsed since the wood ash application. This study suggests that oligotrophic peatlands can be substantially affected by wood ash for a period of at least 4 years after application. However, within 25 years of the wood ash application, the microbial biomass seemed to have recovered or adapted to enhanced element concentrations in the soil.


Assuntos
Biomassa , Ecossistema , Microbiologia do Solo , Árvores/microbiologia , Ácidos Graxos/análise , Metano/metabolismo , Nitrogênio/metabolismo , Oxirredução , Fosfolipídeos/análise , Solo/análise , Suécia , Fatores de Tempo , Madeira/química
18.
New Phytol ; 176(4): 862-873, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17937761

RESUMO

Effects of warming on root morphology, root mass distribution and microbial activity were studied in organic and mineral soil layers in two alpine ecosystems over>10 yr, using open-top chambers, in Swedish Lapland. Root mass was estimated using soil cores. Washed roots were scanned and sorted into four diameter classes, for which variables including root mass (g dry matter (g DM) m(-2)), root length density (RLD; cm cm(-3) soil), specific root length (SRL; m g DM(-1)), specific root area (SRA; m2 kg DM(-1)), and number of root tips m(-2) were determined. Nitrification (NEA) and denitrification enzyme activity (DEA) in the top 10 cm of soil were measured. Soil warming shifted the rooting zone towards the upper soil organic layer in both plant communities. In the dry heath, warming increased SRL and SRA of the finest roots in both soil layers, whereas the dry meadow was unaffected. Neither NEA nor DEA exhibited differences attributable to warming. Tundra plants may respond to climate change by altering their root morphology and mass while microbial activity may be unaffected. This suggests that carbon may be incorporated in tundra soils partly as a result of increases in the mass of the finer roots if temperatures rise.


Assuntos
Ecossistema , Efeito Estufa , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Plantas/enzimologia , Regiões Árticas , Microbiologia do Solo , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...