RESUMO
INTRODUCTION: Spinal Muscular Atrophy (SMA), the second most prevalent autosomal genetic disease affecting infants, is caused by the lack of SMN1, which encodes a neuron functioning vital protein, SMN. Improving exon 7 splicing in the paralogous gene SMN2, also coding for SMN protein, increases protein production efficiency from SMN2 to overcome the genetic deficit in SMN1. Several molecular mechanisms have been investigated to improve SMN2 functional splicing. AREAS COVERED: This manuscript will cover two of the three mechanistically distinct available treatment options for SMA, both targeting the SMN2 splicing mechanism. The first therapeutic, nusinersen (Spinraza®, 2017), is an antisense oligonucleotide (ASO) targeting the splicing inhibitory sequence in the intron downstream of exon 7 from SMN2, thus increasing exon 7 inclusion. The second drug is a small molecule, risdiplam (Evrysdi®, 2021), that enhances the binding of splice factors and also promotes exon 7 inclusion. Both therapies, albeit through different mechanisms, increase full-length SMN protein expression. EXPERT OPINION: Nusinersen and risdiplam have directly helped SMA patients and families, but they also herald a sea change in drug development for genetic diseases. This piece aims to draw parallels between both development histories; this may help chart the course for future targeted agents.
Assuntos
Atrofia Muscular Espinal , Oligonucleotídeos Antissenso , Humanos , Oligonucleotídeos Antissenso/farmacologia , RNA , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Descoberta de DrogasRESUMO
Gangliosides are expressed on plasma membranes throughout the body and enriched in the nervous system. A critical role for complex a- and b-series gangliosides in central and peripheral nervous system ageing has been established through transgenic manipulation of enzymes in ganglioside biosynthesis. Disrupting GalNAc-transferase (GalNAc-T), thus eliminating all a- and b-series complex gangliosides (with consequent over-expression of GM3 and GD3) leads to an age-dependent neurodegeneration. Mice that express only GM3 ganglioside (double knockout produced by crossing GalNAc-T-/- and GD3 synthase-/- mice, Dbl KO) display markedly accelerated neurodegeneration with reduced survival. Degenerating axons and disrupted node of Ranvier architecture are key features of complex ganglioside-deficient mice. Previously, we have shown that reintroduction of both a- and b-series gangliosides into neurons on a global GalNAcT-/- background is sufficient to rescue this age-dependent neurodegenerative phenotype. To determine the relative roles of a- and b-series gangliosides in this rescue paradigm, we herein reintroduced GalNAc-T into neurons of Dbl KO mice, thereby reconstituting a-series but not b-series complex gangliosides. We assessed survival, axon degeneration, axo-glial integrity, inflammatory markers and lipid-raft formation in these Rescue mice compared to wild-type and Dbl KO mice. We found that this neuronal reconstitution of a-series complex gangliosides abrogated the adult lethal phenotype in Dbl KO mice, and partially attenuated the neurodegenerative features. This suggests that whilst neuronal expression of a-series gangliosides is critical for survival during ageing, it is not entirely sufficient to restore complete nervous system integrity in the absence of either b-series or glial a-series gangliosides.
Assuntos
Gangliosídeo G(M3)/metabolismo , Gangliosídeos/metabolismo , Genes Letais/genética , Neurônios/metabolismo , Animais , Axônios/patologia , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Inflamação/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , N-Acetilgalactosaminiltransferases/genética , Fenótipo , Nós Neurofibrosos/patologia , Sialiltransferases/genética , Análise de Sobrevida , Polipeptídeo N-AcetilgalactosaminiltransferaseRESUMO
In most of the world Toxoplasma gondii is comprised of archetypal types (types I, II and III); however, South America displays several non-archetypal strains. This study used an experimental mouse model to characterize the immune response and parasite kinetics following infection with different parasite genotypes. An oral inoculation of 50 oocysts per mouse from T. gondii M4 type II (archetypal, avirulent), BrI or BrIII (non-archetypal, virulent and intermediate virulent, respectively) for groups (G)2, G3 and G4, respectively was used. The levels of mRNA expression of cytokines, immune compounds, cell surface markers and receptor adapters [interferon gamma (IFNγ), interleukin (IL)-12, CD8, CD4, CD25, CXCR3 and MyD88] were quantified by SYBR green reverse transcription-quantitative polymerase chain reaction. Lesions were characterized by histology and detection by immunohistochemistry established distribution of parasites. Infection in G2 mice was mild and characterized by an early MyD88-dependent pathway. In G3, there were high levels of expression of pro-inflammatory cytokines IFNγ and IL-12 in the mice showing severe clinical symptoms at 811 days post infection (dpi), combined with the upregulation of CD25, abundant tachyzoites and tissue lesions in livers, lungs and intestines. Significant longer expression of IFNγ and IL-12 genes, with other Th1-balanced immune responses, such as increased levels of CXCR3 and MyD88 in G4, resulted in survival of mice and chronic toxoplasmosis, with the occurrence of tissue cysts in brain and lungs, at 14 and 21 dpi. Different immune responses and kinetics of gene expression appear to be elicited by the different strains and non-archetypal parasites demonstrated higher virulence.
Assuntos
Toxoplasma/fisiologia , Toxoplasmose Animal/parasitologia , Animais , Antígenos CD/metabolismo , Gatos , Citocinas/metabolismo , DNA Complementar/biossíntese , DNA de Protozoário/isolamento & purificação , Feminino , Genótipo , Imuno-Histoquímica , Linfonodos/parasitologia , Linfonodos/patologia , Mesentério , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/isolamento & purificação , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Receptores CXCR3/metabolismo , Baço/parasitologia , Baço/patologia , Toxoplasma/classificação , Toxoplasma/genética , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/patologiaRESUMO
Genome sequencing is often pivotal in the diagnosis of rare diseases, but many of these conditions lack specific treatments. We describe how molecular diagnosis of a rare, fatal neurodegenerative condition led to the rational design, testing, and manufacture of milasen, a splice-modulating antisense oligonucleotide drug tailored to a particular patient. Proof-of-concept experiments in cell lines from the patient served as the basis for launching an "N-of-1" study of milasen within 1 year after first contact with the patient. There were no serious adverse events, and treatment was associated with objective reduction in seizures (determined by electroencephalography and parental reporting). This study offers a possible template for the rapid development of patient-customized treatments. (Funded by Mila's Miracle Foundation and others.).
Assuntos
Proteínas de Membrana Transportadoras/genética , Mutagênese Insercional , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Lipofuscinoses Ceroides Neuronais/genética , Oligonucleotídeos Antissenso/uso terapêutico , Medicina de Precisão , Doenças Raras/tratamento farmacológico , Biópsia , Criança , Desenvolvimento Infantil , Descoberta de Drogas , Drogas em Investigação/uso terapêutico , Eletroencefalografia , Feminino , Humanos , Testes Neuropsicológicos , RNA Mensageiro , Convulsões/diagnóstico , Convulsões/tratamento farmacológico , Pele/patologia , Sequenciamento Completo do GenomaRESUMO
Monoclonal antibodies (mAbs) are improving the quality of life for patients suffering from serious diseases due to their high specificity for their target and low potential for off-target toxicity. The toxicity of mAbs is primarily driven by their pharmacological activity, and therefore safety testing of these drugs prior to clinical testing is performed in species in which the mAb binds and engages the target to a similar extent to that anticipated in humans. For highly human-specific mAbs, this testing often requires the use of non-human primates (NHPs) as relevant species. It has been argued that the value of these NHP studies is limited because most of the adverse events can be predicted from the knowledge of the target, data from transgenic rodents or target-deficient humans, and other sources. However, many of the mAbs currently in development target novel pathways and may comprise novel scaffolds with multi-functional domains; hence, the pharmacological effects and potential safety risks are less predictable. Here, we present a total of 18 case studies, including some of these novel mAbs, with the aim of interrogating the value of NHP safety studies in human risk assessment. These studies have identified mAb candidate molecules and pharmacological pathways with severe safety risks, leading to candidate or target program termination, as well as highlighting that some pathways with theoretical safety concerns are amenable to safe modulation by mAbs. NHP studies have also informed the rational design of safer drug candidates suitable for human testing and informed human clinical trial design (route, dose and regimen, patient inclusion and exclusion criteria and safety monitoring), further protecting the safety of clinical trial participants.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Primatas , Animais , Anticorpos Monoclonais/efeitos adversos , Qualidade de Produtos para o Consumidor , Humanos , Modelos Animais , Medição de Risco , Fatores de Risco , Especificidade da EspécieRESUMO
Evaluation of the safety of new chemicals and pharmaceuticals requires the combination of information from various sources (e.g. in vitro, in silico and in vivo) to provide an assessment of risk to human health and the environment. The authors have identified opportunities to maximize the predictivity of this information to humans while reducing animal use in four key areas; (i) accelerating the uptake of in vitro methods; (ii) incorporating the latest science into safety pharmacology assessments; (iii) optimizing rodent study design in biological development and (iv) consolidating approaches in developmental and reproductive toxicology. Through providing a forum for open discussion of novel proposals, reviewing current research and obtaining expert opinion in each of the four areas, the authors have developed recommendations on good practice and future strategy.
Assuntos
Alternativas aos Testes com Animais/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Toxicologia/métodos , Animais , Humanos , Projetos de Pesquisa , Medição de Risco/métodos , Roedores , Especificidade da Espécie , Pesquisa Translacional Biomédica/métodosRESUMO
The changing environment of monoclonal antibody (mAb) development is impacting on the cost of drug development and the use of experimental animals, particularly non-human primates (NHPs). The drive to reduce these costs is huge and involves rethinking and improving nonclinical studies to make them more efficient and more predictive of man. While NHP use might be unavoidable in many cases because of the exquisite specificity and consequent species selectivity of mAbs, our increasing knowledge base can be used to improve drug development and maximise the output of experimental data. Data on GLP regulatory toxicology studies for 58mAbs were obtained from 10 companies across a wide range of therapeutic indications. These data have been used to investigate current practice and identify study designs that minimise NHP use. Our analysis shows that there is variation in the number of animals used for similar studies. This information has been used to develop practical guidance and make recommendations on the use of science-based rationale to design studies using fewer animals taking into account the current regulatory guidance. There are eight recommendations intended to highlight areas for consideration. They include guidance on the main group size, the inclusion of recovery groups and the number of dose groups used in short and long term chronic toxicology studies.