Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39131297

RESUMO

Background: Deep brain stimulation (DBS), the direct electrical stimulation of neuronal tissue in the basal forebrain to enhance release of the neurotransmitter acetylcholine, is under consideration as a method to improve executive function in patients with dementia. While some small studies indicate a positive response in the clinical setting, the relationship between DBS and acetylcholine pharmacokinetics is incompletely understood. Objective: We examined the cortical acetylcholine response to different stimulation parameters of the basal forebrain. Methods: 2-photon imaging was combined with deep brain stimulation. Stimulating electrodes were implanted in the subpallidal basal forebrain, and the ipsilateral somatosensory cortex was imaged. Acetylcholine activity was determined using the GRABACh-3.0 muscarinic acetylcholine receptor sensor, and blood vessels were imaged with Texas red. Results: Experiments manipulating pulse train frequency demonstrated that integrated acetylcholine induced fluorescence was insensitive to frequency, and that peak levels were achieved with frequencies from 60 to 130 Hz. Altering pulse train length indicated that longer stimulation resulted in higher peaks and more activation with sublinear summation. The acetylcholinesterase inhibitor donepezil increased the peak response to 10s of stimulation at 60Hz, and the integrated response increased 57% with the 2 mg/kg dose, and 126% with the 4 mg/kg dose. Acetylcholine levels returned to baseline with a time constant of 14 to 18 seconds in all experiments. Conclusions: These data demonstrate that acetylcholine receptor activation is insensitive to frequency between 60 and 130 Hz. High peak responses are achieved with up to 900 pulses. Donepezil increases total acetylcholine receptor activation associated with DBS but did not change temporal kinetics. The long time constants observed in the cerebral cortex add to the evidence supporting volume in addition to synaptic transmission.

2.
bioRxiv ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38463995

RESUMO

Activation of the basal forebrain leads to increases in the expression of the nerve growth factor receptor, Tropomyosin receptor kinase A (TrkA) and decreases in expression of the beta amyloid cleavage enzyme 1 (BACE1) in the cerebral cortex of both sexes of 5xFAD mice. The studies described in this report were designed to determine if these changes were dependent on acetylcholine receptors. Mice were stimulated unilaterally in the basal forebrain for two weeks. Animals were administered a cholinergic antagonist, or saline, 30 minutes prior to stimulation. Animals administered saline exhibited significant increases in TrkA expression and decreases in BACE1 in the stimulated hemisphere relative to the unstimulated. While both nonselective nicotinic and muscarinic acetylcholine receptor blockade attenuated the BACE1 decline, only the nicotinic receptor antagonism blocked the TrkA increase. Next, we applied selective nicotinic antagonists, and the α7 antagonist blocked the TrkA increases, but the α4ß2 antagonist did not. BACE1 declines were not blocked by either intervention. Mice with a loxP conditional knockout of the gene for the α7 nicotinic receptor were also employed in these studies. Animals were either stimulated bilaterally for two weeks, or left unstimulated. With or without stimulation, the expression of TrkA receptors was lower in the cortical region with the α7 nicotinic receptor knockdown. We thus conclude that α7 nicotinic receptor activation is necessary for normal expression of TrkA and increases caused by basal forebrain activation, while BACE1 declines caused by stimulation have dependency on a broader array of receptor subtypes.

4.
Cereb Cortex ; 33(12): 7627-7641, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36939283

RESUMO

The etiology of Alzheimer's dementia has been hypothesized in terms of basal forebrain cholinergic decline, and in terms of reflecting beta-amyloid neuropathology. To study these different biological elements, we activated the basal forebrain in 5xFAD Alzheimer's model mice and littermates. Mice received 5 months of 1 h per day intermittent stimulation of the basal forebrain, which includes cholinergic projections to the cortical mantle. Then, mice were behaviorally tested followed by tissue analysis. The 5xFAD mice performed worse in water-maze testing than littermates. Stimulated groups learned the water maze better than unstimulated groups. Stimulated groups had 2-3-fold increases in frontal cortex immunoblot measures of the neurotrophin receptors for nerve growth factor and brain-derived neurotrophic factor, and a more than 50% decrease in the expression of amyloid cleavage enzyme BACE1. Stimulation also led to lower Aß42 in 5xFAD mice. These data support a causal relationship between basal forebrain activation and both neurotrophin activation and reduced Aß42 generation and accumulation. The observation that basal forebrain activation suppresses Aß42 accumulation, combined with the known high-affinity antagonism of nicotinic receptors by Aß42, documents bidirectional antagonism between acetylcholine and Aß42.


Assuntos
Doença de Alzheimer , Prosencéfalo Basal , Camundongos , Animais , Doença de Alzheimer/patologia , Receptores de Fator de Crescimento Neural , Camundongos Transgênicos , Memória Espacial , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Peptídeos beta-Amiloides/metabolismo , Colinérgicos
5.
Artigo em Inglês | MEDLINE | ID: mdl-35905064

RESUMO

To stimulate the auditory nerve, cochlear implants directly inject electrical current into surrounding tissue via an implanted electrode array. While many cochlear implant users achieve strong speech perception scores, there remains significant variability. Since cochlear implant electrode arrays are surrounded by a conductive fluid, perilymph, a spread of excitation occurs. The functionality of the cochlea is spatially dependent, and a wider area of excitation negatively affects the hearing of the user. Importantly, magnetic fields are unaffected by the material properties of biological components. To utilize the electromagnetic properties of the human ear, a microcoil array was developed. The microcoils are 4-turn solenoids with a 250- [Formula: see text] turn radius and a 31.75- [Formula: see text] wire radius, coated with Parylene-C. The efficient design was implemented to accelerate testing. The obtained results describe stimulation capabilities. Functionality was validated using a frequency response analyzer to measure how the generated electromagnetic power radiates in space. 99.8% power loss was observed over a 100- [Formula: see text] separation between a pair of identical microcoils. Obtained through finite-element modeling, the microcoils can be driven by a 60 mA, 5 kHz, sinusoidal input for 10 minutes before predicted inflammation. Rattay's activating function was calculated to evaluate the magnetic stimulation effect of external fields on target neurons. Combined with the frequency response analysis, magnitude and spatial effects of the generated potential is established. As a result, each microcoil requires a 400- [Formula: see text]-wide area for each independent stimulation channel, which is 84% narrower than a commercial cochlear array channel, thereby suggesting greater spatial selectivity.


Assuntos
Implante Coclear , Implantes Cocleares , Cóclea/fisiologia , Nervo Coclear/fisiologia , Estimulação Elétrica , Eletrodos Implantados , Humanos
6.
STAR Protoc ; 3(1): 101136, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35112086

RESUMO

We present an experimental protocol to record neuronal activity during intermittent stimulation of nucleus basalis (NB), as macaque monkeys perform cognitive tasks. This protocol includes implantation of electrodes and generator devices to deliver electrical stimulation to NB using multiple approaches in monkeys. Direct stimulation of NB avoids peripheral cholinergic side effects, optimizes timing, and activates non-cholinergic projection neurons. We describe electrode preparation, surgery, and implantation for direct evaluation of how stimulation affects monkeys' behavior and neuronal activity. For complete details on the use and execution of this profile, please refer to Qi et al. (2021).


Assuntos
Núcleo Basal de Meynert , Macaca , Animais , Núcleo Basal de Meynert/fisiologia , Estimulação Elétrica , Haplorrinos , Neurônios/fisiologia
7.
eNeuro ; 9(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35058309

RESUMO

The action of acetylcholine in the cortex is critical for cognitive functions and cholinergic drugs can improve functions such as attention and working memory. An alternative means of enhancing cholinergic neuromodulation in primates is the intermittent electrical stimulation of the cortical source of acetylcholine, the nucleus basalis (NB) of Meynert. NB stimulation generally increases firing rate of neurons in the prefrontal cortex, however its effects on single neurons are diverse and complex. We sought to understand how NB stimulation affects global measures of neural activity by recording and analyzing local field potentials (LFPs) in monkeys as they performed working memory tasks. NB stimulation primarily decreased power in the alpha frequency range during the delay interval of working memory tasks. The effect was consistent across variants of the task. No consistent modulation in the delay interval of the task was observed in the gamma frequency range, which has previously been implicated in the maintenance of working memory. Our results reveal global effects of cholinergic neuromodulation via deep brain stimulation, an emerging intervention for the improvement of cognitive function.


Assuntos
Núcleo Basal de Meynert , Memória de Curto Prazo , Acetilcolina/farmacologia , Animais , Núcleo Basal de Meynert/fisiologia , Memória de Curto Prazo/fisiologia , Periodicidade , Córtex Pré-Frontal/fisiologia
8.
Nat Commun ; 13(1): 90, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013248

RESUMO

Training in working memory tasks is associated with lasting changes in prefrontal cortical activity. To assess the neural activity changes induced by training, we recorded single units, multi-unit activity (MUA) and local field potentials (LFP) with chronic electrode arrays implanted in the prefrontal cortex of two monkeys, throughout the period they were trained to perform cognitive tasks. Mastering different task phases was associated with distinct changes in neural activity, which included recruitment of larger numbers of neurons, increases or decreases of their firing rate, changes in the correlation structure between neurons, and redistribution of power across LFP frequency bands. In every training phase, changes induced by the actively learned task were also observed in a control task, which remained the same across the training period. Our results reveal how learning to perform cognitive tasks induces plasticity of prefrontal cortical activity, and how activity changes may generalize between tasks.


Assuntos
Potenciais de Ação/fisiologia , Cognição/fisiologia , Memória de Curto Prazo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Eletrodos Implantados , Macaca mulatta , Masculino , Neurônios/citologia , Córtex Pré-Frontal/anatomia & histologia , Técnicas Estereotáxicas
10.
Cell Rep ; 36(5): 109469, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34348147

RESUMO

Acetylcholine plays a critical role in the neocortex. Cholinergic agonists and acetylcholinesterase inhibitors can enhance cognitive functioning, as does intermittent electrical stimulation of the cortical source of acetylcholine, the nucleus basalis (NB) of Meynert. Here we show in two male monkeys how NB stimulation affects working memory and alters its neural code. NB stimulation increases dorsolateral prefrontal activity during the delay period of spatial working memory tasks and broadens selectivity for stimuli but does not strengthen phasic responses to each neuron's optimal visual stimulus. Paradoxically, despite this decrease in neuronal selectivity, performance improves in many task conditions, likely indicating increased delay period stability. Performance under NB stimulation does decline if distractors similar to the target are presented, consistent with reduced prefrontal selectivity. Our results indicate that stimulation of the cholinergic forebrain increases prefrontal neural activity, and this neuromodulatory tone can improve cognitive performance, subject to a stability-accuracy tradeoff.


Assuntos
Núcleo Basal de Meynert/fisiologia , Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal/fisiologia , Potenciais de Ação/fisiologia , Animais , Comportamento Animal , Estimulação Elétrica , Macaca mulatta , Masculino , Neurônios/fisiologia , Análise e Desempenho de Tarefas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...