Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Subcell Biochem ; 101: 81-125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36520304

RESUMO

The Hsp70/Hsp90 organising protein (Hop, also known as stress-inducible protein 1/STI1/STIP1) has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins, although recent evidence suggests that eukaryotic Hop is regulatory within chaperone complexes rather than essential. Consequently, Hop is implicated in many key signalling pathways, including aberrant pathways leading to cancer. Hop is also secreted, and it is now well established that Hop interacts with the prion protein, PrPC, to mediate multiple signalling events. The intracellular and extracellular forms of Hop most likely represent two different isoforms, although the molecular determinants of these divergent functions are yet to be identified. There is also a growing body of research that reports the involvement of Hop in cellular activities that appear independent of either chaperones or PrPC. While the various cellular functions of Hop have been described, its biological function remains elusive. However, recent knockout studies in mammals suggest that Hop has an important role in embryonic development. This review provides a critical overview of the latest molecular, cellular and biological research on Hop, critically evaluating its function in healthy systems and how this function is adapted in diseased states.


Assuntos
Proteínas de Choque Térmico , Chaperonas Moleculares , Animais , Humanos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Mamíferos/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ligação Proteica , Transdução de Sinais
2.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365744

RESUMO

Cell migration plays a vital role in both health and disease. It is driven by reorganization of the actin cytoskeleton, which is regulated by actin-binding proteins cofilin and profilin. Stress-inducible phosphoprotein 1 (STIP1) is a well-described co-chaperone of the Hsp90 chaperone system, and our findings identify a potential regulatory role of STIP1 in actin dynamics. We show that STIP1 can be isolated in complex with actin and Hsp90 from HEK293T cells and directly interacts with actin in vitro via the C-terminal TPR2AB-DP2 domain of STIP1, potentially due to a region spanning two putative actin-binding motifs. We found that STIP1 could stimulate the in vitro ATPase activity of actin, suggesting a potential role in the modulation of F-actin formation. Interestingly, while STIP1 depletion in HEK293T cells had no major effect on total actin levels, it led to increased nuclear accumulation of actin, disorganization of F-actin structures, and an increase and decrease in cofilin and profilin levels, respectively. This study suggests that STIP1 regulates the cytoskeleton by interacting with actin, or via regulating the ratio of proteins known to affect actin dynamics.


Assuntos
Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Proteínas de Choque Térmico/metabolismo , Profilinas/metabolismo , Citoesqueleto de Actina/química , Actinas/química , Sequência de Aminoácidos , Imunofluorescência , Proteínas de Choque Térmico/química , Humanos , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
3.
J Exp Zool B Mol Dev Evol ; 322(6): 359-78, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24106212

RESUMO

Molecular chaperones and their associated co-chaperones play an important role in preserving and regulating the active conformational state of cellular proteins. The chaperone complement of the Indonesian Coelacanth, Latimeria menadoensis, was elucidated using transcriptomic sequences. Heat shock protein 90 (Hsp90) and heat shock protein 40 (Hsp40) chaperones, and associated co-chaperones were focused on, and homologous human sequences were used to search the sequence databases. Coelacanth homologs of the cytosolic, mitochondrial and endoplasmic reticulum (ER) homologs of human Hsp90 were identified, as well as all of the major co-chaperones of the cytosolic isoform. Most of the human Hsp40s were found to have coelacanth homologs, and the data suggested that all of the chaperone machinery for protein folding at the ribosome, protein translocation to cellular compartments such as the ER and protein degradation were conserved. Some interesting similarities and differences were identified when interrogating human, mouse, and zebrafish homologs. For example, DnaJB13 is predicted to be a non-functional Hsp40 in humans, mouse, and zebrafish due to a corrupted histidine-proline-aspartic acid (HPD) motif, while the coelacanth homolog has an intact HPD. These and other comparisons enabled important functional and evolutionary questions to be posed for future experimental studies.


Assuntos
Peixes/genética , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP90/genética , Chaperonas Moleculares/genética , Proteínas/genética , Sequência de Aminoácidos , Animais , Citosol , Retículo Endoplasmático , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Filogenia , Dobramento de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...