Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Retrovirology ; 21(1): 10, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38778414

RESUMO

BACKGROUND: Detection of viruses by host pattern recognition receptors induces the expression of type I interferon (IFN) and IFN-stimulated genes (ISGs), which suppress viral replication. Numerous studies have described HIV-1 as a poor activator of innate immunity in vitro. The exact role that the viral capsid plays in this immune evasion is not fully understood. RESULTS: To better understand the role of the HIV-1 capsid in sensing we tested the effect of making HIV-1 by co-expressing a truncated Gag that encodes the first 107 amino acids of capsid fused with luciferase or GFP, alongside wild type Gag-pol. We found that unlike wild type HIV-1, viral particles produced with a mixture of wild type and truncated Gag fused to luciferase or GFP induced a potent IFN response in THP-1 cells and macrophages. Innate immune activation by Gag-fusion HIV-1 was dependent on reverse transcription and DNA sensor cGAS, suggesting activation of an IFN response by viral DNA. Further investigation revealed incorporation of the Gag-luciferase/GFP fusion proteins into viral particles that correlated with subtle defects in wild type Gag cleavage and a diminished capacity to saturate restriction factor TRIM5α, likely due to aberrant particle formation. We propose that expression of the Gag fusion protein disturbs the correct cleavage and maturation of wild type Gag, yielding viral particles that are unable to effectively shield viral DNA from detection by innate sensors including cGAS. CONCLUSIONS: These data highlight the crucial role of capsid in innate evasion and support growing literature that disruption of Gag cleavage and capsid formation induces a viral DNA- and cGAS-dependent innate immune response. Together these data demonstrate a protective role for capsid and suggest that antiviral activity of capsid-targeting antivirals may benefit from enhanced innate and adaptive immunity in vivo.


Assuntos
HIV-1 , Imunidade Inata , Nucleotidiltransferases , Produtos do Gene gag do Vírus da Imunodeficiência Humana , HIV-1/imunologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fatores de Restrição Antivirais , Macrófagos/imunologia , Macrófagos/virologia , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Células THP-1 , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/imunologia , Evasão da Resposta Imune , Capsídeo/metabolismo , Capsídeo/imunologia , Replicação Viral , Vírion/metabolismo , Vírion/genética , Vírion/imunologia , Interações Hospedeiro-Patógeno/imunologia , DNA Viral/genética , Linhagem Celular
2.
Cell Rep ; 43(5): 114122, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38652659

RESUMO

DNA sensing is important for antiviral immunity. The DNA sensor cGAS synthesizes 2'3'-cyclic GMP-AMP (cGAMP), a second messenger that activates STING, which induces innate immunity. cGAMP not only activates STING in the cell where it is produced but cGAMP also transfers to other cells. Transporters, channels, and pores (including SLC19A1, SLC46A2, P2X7, ABCC1, and volume-regulated anion channels (VRACs)) release cGAMP into the extracellular space and/or import cGAMP. We report that infection with multiple human viruses depletes some of these cGAMP conduits. This includes herpes simplex virus 1 (HSV-1) that targets SLC46A2, P2X7, and the VRAC subunits LRRC8A and LRRC8C for degradation. The HSV-1 protein UL56 is necessary and sufficient for these effects that are mediated at least partially by proteasomal turnover. UL56 thereby inhibits cGAMP uptake via VRAC, SLC46A2, and P2X7. Taken together, HSV-1 antagonizes intercellular cGAMP transfer. We propose that this limits innate immunity by reducing cell-to-cell communication via the immunotransmitter cGAMP.


Assuntos
Herpesvirus Humano 1 , Nucleotídeos Cíclicos , Animais , Humanos , Células HEK293 , Herpes Simples/virologia , Herpes Simples/metabolismo , Herpes Simples/imunologia , Herpesvirus Humano 1/fisiologia , Nucleotídeos Cíclicos/metabolismo , Proteínas Virais/metabolismo
3.
Front Immunol ; 14: 1150705, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287967

RESUMO

2'3'-cGAMP is a key molecule in the cGAS-STING pathway. This cyclic dinucleotide is produced by the cytosolic DNA sensor cGAS in response to the presence of aberrant dsDNA in the cytoplasm which is associated with microbial invasion or cellular damage. 2'3'-cGAMP acts as a second messenger and activates STING, the central hub of DNA sensing, to induce type-I interferons and pro-inflammatory cytokines necessary for responses against infection, cancer or cellular stress. Classically, detection of pathogens or danger by pattern recognition receptors (PRR) was thought to signal and induce the production of interferon and pro-inflammatory cytokines in the cell where sensing occurred. These interferon and cytokines then signal in both an autocrine and paracrine manner to induce responses in neighboring cells. Deviating from this dogma, recent studies have identified multiple mechanisms by which 2'3'-cGAMP can travel to neighboring cells where it activates STING independent of DNA sensing by cGAS. This observation is of great importance, as the cGAS-STING pathway is involved in immune responses against microbial invaders and cancer while its dysregulation drives the pathology of a wide range of inflammatory diseases to which antagonists have been elusive. In this review, we describe the fast-paced discoveries of the mechanisms by which 2'3'-cGAMP can be transported. We further highlight the diseases where they are important and detail how this change in perspective can be applied to vaccine design, cancer immunotherapies and treatment of cGAS-STING associated disease.


Assuntos
Interferon Tipo I , Neoplasias , Humanos , Transdução de Sinais , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , DNA , Neoplasias/terapia
4.
EMBO J ; 41(14): e109217, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35670106

RESUMO

Varicella-Zoster virus (VZV) causes chickenpox and shingles. Although the infection is associated with severe morbidity in some individuals, molecular mechanisms that determine innate immune responses remain poorly defined. We found that the cGAS/STING DNA sensing pathway was required for type I interferon (IFN) induction during VZV infection and that recognition of VZV by cGAS restricted its replication. Screening of a VZV ORF expression library identified the essential VZV tegument protein ORF9 as a cGAS antagonist. Ectopically or virally expressed ORF9 bound to endogenous cGAS leading to reduced type I IFN responses to transfected DNA. Confocal microscopy revealed co-localisation of cGAS and ORF9. ORF9 and cGAS also interacted directly in a cell-free system and phase-separated together with DNA. Furthermore, ORF9 inhibited cGAMP production by cGAS. Taken together, these results reveal the importance of the cGAS/STING DNA sensing pathway for VZV recognition and identify a VZV immune antagonist that partially but directly interferes with DNA sensing via cGAS.


Assuntos
Herpesvirus Humano 3 , Interferon Tipo I , Nucleotidiltransferases , Proteínas Virais , DNA/metabolismo , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/imunologia , Humanos , Imunidade Inata , Interferon Tipo I/imunologia , Proteínas de Membrana/imunologia , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/imunologia , Proteínas Virais/imunologia
5.
Cell Rep ; 31(6): 107640, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32402273

RESUMO

The anti-leukemia agent forodesine causes cytotoxic overload of intracellular deoxyguanosine triphosphate (dGTP) but is efficacious only in a subset of patients. We report that SAMHD1, a phosphohydrolase degrading deoxyribonucleoside triphosphate (dNTP), protects cells against the effects of dNTP imbalances. SAMHD1-deficient cells induce intrinsic apoptosis upon provision of deoxyribonucleosides, particularly deoxyguanosine (dG). Moreover, dG and forodesine act synergistically to kill cells lacking SAMHD1. Using mass cytometry, we find that these compounds kill SAMHD1-deficient malignant cells in patients with chronic lymphocytic leukemia (CLL). Normal cells and CLL cells from patients without SAMHD1 mutation are unaffected. We therefore propose to use forodesine as a precision medicine for leukemia, stratifying patients by SAMHD1 genotype or expression.


Assuntos
Nucleotídeos de Desoxiguanina/metabolismo , Nucleosídeos de Purina/farmacologia , Pirimidinonas/farmacologia , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Animais , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
J Biol Chem ; 293(26): 9937-9944, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29678879

RESUMO

Many enveloped viruses enter cells through the endocytic network, from which they must subsequently escape through fusion of viral and endosomal membranes. This membrane fusion is mediated by virus-encoded spikes that respond to the dynamic endosomal environment, which triggers conformational changes in the spikes that initiate the fusion process. Several fusion triggers have been identified and include pH, membrane composition, and endosome-resident proteins, and these cues dictate when and where viral fusion occurs. We recently reported that infection with an enveloped bunyavirus requires elevated potassium ion concentrations [K+], controlled by cellular K+ channels, that are encountered during viral transit through maturing endosomes. Here we reveal the molecular basis for the K+ requirement of bunyaviruses through the first direct visualization of a member of the Nairoviridae family, namely Hazara virus (HAZV), using cryo-EM. Using cryo-electron tomography, we observed HAZV spike glycoproteins within infectious HAZV particles exposed to both high and low [K+], which showed that exposure to K+ alone results in dramatic changes to the ultrastructural architecture of the virion surface. In low [K+], the spikes adopted a compact conformation arranged in locally ordered arrays, whereas, following exposure to high [K+], the spikes became extended, and spike-membrane interactions were observed. Viruses exposed to high [K+] also displayed enhanced infectivity, thus identifying K+ as a newly defined trigger that helps promote viral infection. Finally, we confirmed that K+ channel blockers are inhibitory to HAZV infection, highlighting the potential of K+ channels as anti-bunyavirus targets.


Assuntos
Orthobunyavirus/efeitos dos fármacos , Orthobunyavirus/fisiologia , Potássio/farmacologia , Internalização do Vírus/efeitos dos fármacos , Células A549 , Relação Dose-Resposta a Droga , Humanos , Orthobunyavirus/metabolismo , Canais de Potássio/metabolismo , Conformação Proteica/efeitos dos fármacos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...