Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(6): 436, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902268

RESUMO

Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide, necessitating the identification of novel therapeutic targets. Lysosome Associated Protein Transmembrane 4B (LAPTM4B) is involved in biological processes critical to cancer progression, such as regulation of solute carrier transporter proteins and metabolic pathways, including mTORC1. However, the metabolic processes governed by LAPTM4B and its role in oncogenesis remain unknown. In this study, we conducted unbiased metabolomic screens to uncover the metabolic landscape regulated by LAPTM4B. We observed common metabolic changes in several knockout cell models suggesting of a role for LAPTM4B in suppressing ferroptosis. Through a series of cell-based assays and animal experiments, we demonstrate that LAPTM4B protects tumor cells from erastin-induced ferroptosis both in vitro and in vivo. Mechanistically, LAPTM4B suppresses ferroptosis by inhibiting NEDD4L/ZRANB1 mediated ubiquitination and subsequent proteasomal degradation of the cystine-glutamate antiporter SLC7A11. Furthermore, metabolomic profiling of cancer cells revealed that LAPTM4B knockout leads to a significant enrichment of ferroptosis and associated metabolic alterations. By integrating results from cellular assays, patient tissue samples, an animal model, and cancer databases, this study highlights the clinical relevance of the LAPTM4B-SLC7A11-ferroptosis signaling axis in NSCLC progression and identifies it as a potential target for the development of cancer therapeutics.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , Complexo de Endopeptidases do Proteassoma , Ubiquitina , Ferroptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Camundongos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Linhagem Celular Tumoral , Ubiquitinação , Camundongos Nus , Proteólise/efeitos dos fármacos
2.
Oncogenesis ; 12(1): 25, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37147294

RESUMO

Osteosarcoma (OS) is a rare malignant bone tumor but is one leading cause of cancer mortality in childhood and adolescence. Cancer metastasis accounts for the primary reason for treatment failure in OS patients. The dynamic organization of the cytoskeleton is fundamental for cell motility, migration, and cancer metastasis. Lysosome Associated Protein Transmembrane 4B (LAPTM4B) is an oncogene participating in various biological progress central to cancer biogenesis. However, the potential roles of LAPTM4B in OS and the related mechanisms remain unknown. Here, we established the elevated LAPTM4B expression in OS, and it is essential in regulating stress fiber organization through RhoA-LIMK-cofilin signaling pathway. In terms of mechanism, our data revealed that LAPTM4B promotes RhoA protein stability by suppressing the ubiquitin-mediated proteasome degradation pathway. Moreover, our data show that miR-137, rather than gene copy number and methylation status, contributes to the upregulation of LAPTM4B in OS. We report that miR-137 is capable of regulating stress fiber arrangement, OS cell migration, and metastasis via targeting LAPTM4B. Combining results from cells, patients' tissue samples, the animal model, and cancer databases, this study further suggests that the miR-137-LAPTM4B axis represents a clinically relevant pathway in OS progression and a viable target for novel therapeutics.

3.
J Biol Chem ; 299(4): 104607, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36924944

RESUMO

The glycolipid transfer protein (GLTP) has been linked to many cellular processes aside from its best-known in vitro function as a lipid transport protein. It has been proposed to act as a sensor and regulator of glycosphingolipid homeostasis in cells. Furthermore, through its previously determined interaction with the endoplasmic reticulum membrane protein VAP-A (vesicle-associated membrane protein-associated protein A), GLTP may also be involved in facilitating vesicular transport in cells. In this study, we characterized the phenotype of CRISPR/Cas9-mediated GLTP KO HeLa cells. We showed that motility, three-dimensional growth, and cellular metabolism were all altered by GLTP knockout. Expression of a GLTP mutant incapable of binding VAP disrupted cell spheroid formation, indicating that the GLTP-VAP interaction is linked to cellular adhesion, cohesion, and three-dimensional growth. Most notably, we found evidence that GLTP, through its interaction with VAP-A, affects vesicular trafficking, marking the first cellular process discovered to be directly impacted by a change in GLTP expression.


Assuntos
Transporte Biológico , Proteínas de Transporte , Membrana Celular , Humanos , Transporte Biológico/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Células HeLa , Técnicas de Inativação de Genes , Ligação Proteica/genética , Regulação da Expressão Gênica/genética , Citosol/metabolismo , Movimento Celular/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-33181324

RESUMO

Lysosome Associated Protein Transmembrane 4B (LAPTM4B) is a four-membrane spanning ceramide interacting protein that regulates mTORC1 signaling. Here, we show that LAPTM4B is sorted into intraluminal vesicles (ILVs) of multivesicular endosomes (MVEs) and released in small extracellular vesicles (sEVs) into conditioned cell culture medium and human urine. Efficient sorting of LAPTM4B into ILV membranes depends on its third transmembrane domain containing a sphingolipid interaction motif (SLim). Unbiased lipidomic analysis reveals a strong enrichment of glycosphingolipids in sEVs secreted from LAPTM4B knockout cells and from cells expressing a SLim-deficient LAPTM4B mutant. The altered sphingolipid profile is accompanied by a distinct SLim-dependent co-modulation of ether lipid species. The changes in the lipid composition of sEVs derived from LAPTM4B knockout cells is reflected by an increased stability of membrane nanodomains of sEVs. These results identify LAPTM4B as a determinant of the glycosphingolipid profile and membrane properties of sEVs.


Assuntos
Exossomos/metabolismo , Glicoesfingolipídeos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Oncogênicas/metabolismo , Linhagem Celular Tumoral , Endossomos/metabolismo , Técnicas de Inativação de Genes , Humanos , Metabolismo dos Lipídeos , Lipidômica , Proteínas de Membrana/genética , Proteínas Oncogênicas/genética
5.
Am J Pathol ; 190(10): 2018-2028, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32679228

RESUMO

Studies of lysosome associated protein transmembrane 4B (LAPTM4B) have mainly focused on the 35-kDa isoform and its association with poor prognosis in cancers. Here, by employing a novel monoclonal antibody, the authors found that the 24-kDa LAPTM4B isoform predominated in most, both healthy and malignant, human cells and tissues studied. LAPTM4B-24 lacks the extreme N-terminus and, contrary to LAPTM4B-35, failed to promote cell migration. The endogenous LAPTM4B-24 protein was subject to rapid turnover with a t1/2 of approximately 1 hour. The protein was degraded by both lysosomal and proteasomal pathways, and its levels were increased by the availability of nutrients and lysosomal ceramide. These findings underscore the pathophysiological relevance of the LAPTM4B-24 isoform and identify it as a dynamically regulated effector in lysosomal nutrient signaling.


Assuntos
Movimento Celular/fisiologia , Ceramidas/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Oncogênicas/metabolismo , Humanos , Isoformas de Proteínas/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo
6.
ACS Cent Sci ; 4(5): 548-558, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29806001

RESUMO

Membrane proteins are functionally regulated by the composition of the surrounding lipid bilayer. The late endosomal compartment is a central site for the generation of ceramide, a bioactive sphingolipid, which regulates responses to cell stress. The molecular interactions between ceramide and late endosomal transmembrane proteins are unknown. Here, we uncover in atomistic detail the ceramide interaction of Lysosome Associated Protein Transmembrane 4B (LAPTM4B), implicated in ceramide-dependent cell death and autophagy, and its functional relevance in lysosomal nutrient signaling. The ceramide-mediated regulation of LAPTM4B depends on a sphingolipid interaction motif and an adjacent aspartate residue in the protein's third transmembrane (TM3) helix. The interaction motif provides the preferred contact points for ceramide while the neighboring membrane-embedded acidic residue confers flexibility that is subject to ceramide-induced conformational changes, reducing TM3 bending. This facilitates the interaction between LAPTM4B and the amino acid transporter heavy chain 4F2hc, thereby controlling mTORC signaling. These findings provide mechanistic insights into how transmembrane proteins sense and respond to ceramide.

7.
Int J Mol Sci ; 18(5)2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28468312

RESUMO

Neuronal ceroid lipofuscinoses (NCLs) are autosomal recessive progressive encephalopathies caused by mutations in at least 14 different genes. Despite extensive studies performed in different NCL animal models, the molecular mechanisms underlying neurodegeneration in NCLs remain poorly understood. To model NCL in human cells, we generated induced pluripotent stem cells (iPSCs) by reprogramming skin fibroblasts from a patient with CLN5 (ceroid lipofuscinosis, neuronal, 5) disease, the late infantile variant form of NCL. These CLN5 patient-derived iPSCs (CLN5Y392X iPSCs) harbouring the most common CLN5 mutation, c.1175_1176delAT (p.Tyr392X), were further differentiated into neural lineage cells, the most affected cell type in NCLs. The CLN5Y392X iPSC-derived neural lineage cells showed accumulation of autofluorescent storage material and subunit C of the mitochondrial ATP synthase, both representing the hallmarks of many forms of NCLs, including CLN5 disease. In addition, we detected abnormalities in the intracellular organelles and aberrations in neuronal sphingolipid transportation, verifying the previous findings obtained from Cln5-deficient mouse macrophages. Therefore, patient-derived iPSCs provide a suitable model to study the mechanisms of NCL diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/genética , Fenótipo , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Membrana Lisossomal , Mutação , Lipofuscinoses Ceroides Neuronais/patologia
8.
Chem Phys Lipids ; 194: 29-36, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26343174

RESUMO

Lipids are often introduced into cell membranes directly from solvent or from lipophilic artificial carriers, such as cyclodextrins. A physiological lipid entry route into mammalian cells is via lipoprotein mediated uptake. In this review, we discuss the introduction of BODIPY-labeled sterol and sphingolipid analogs into mammalian cells via high- or low-density lipoproteins, and the novel findings made by using this strategy. Lipoprotein mediated delivery favors endocytic uptake and initial incorporation of the lipid into membranes of the endosomal compartments. This routing can therefore highlight physiological mechanisms of lipid entry into and exit from the endo-lysosomal membrane system. The underlying principles are of key importance for instance in controlling plasma cholesterol levels and in the development and regression of lysosomal lipid storage diseases. A common denominator for the BODIPY-labeled lipid analogs discussed in this review is that they were synthesized by late Robert Bittman, whose scientific impact radiates far beyond his lifework in organic chemistry.


Assuntos
Compostos de Boro/metabolismo , Corantes Fluorescentes/metabolismo , Lipoproteínas/metabolismo , Esfingolipídeos/metabolismo , Esteróis/metabolismo , Animais , Transporte Biológico , Compostos de Boro/química , Membrana Celular/química , Membrana Celular/metabolismo , Endossomos/química , Endossomos/metabolismo , Corantes Fluorescentes/química , Humanos , Lipoproteínas/química , Esfingolipídeos/química , Esteróis/química
9.
Lipid Insights ; 8(Suppl 1): 11-20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26715852

RESUMO

Ceramide and sphingosine and their phosphorylated counterparts are recognized as "bioactive sphingolipids" and modulate membrane integrity, the activity of enzymes, or act as ligands of G protein-coupled receptors. The subcellular distribution of the bioactive sphingolipids is central to their function as the same lipid can mediate diametrically opposite effects depending on its location. To ensure that these lipids are present in the right amount and in the appropriate organelles, cells employ selective lipid transport and compartmentalize sphingolipid-metabolizing enzymes to characteristic subcellular sites. Our knowledge of key mechanisms involved in sphingolipid signaling and trafficking has increased substantially in the past decades-thanks to advances in biochemical and cell biological methods. In this review, we focus on the bioactive sphingolipids and discuss how the combination of studies in cells and in model membranes have contributed to our understanding of how they behave and function in living organisms.

10.
Nat Chem Biol ; 11(10): 799-806, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26280656

RESUMO

Lysosome-associated protein transmembrane-4b (LAPTM4B) associates with poor prognosis in several cancers, but its physiological function is not well understood. Here we use novel ceramide probes to provide evidence that LAPTM4B interacts with ceramide and facilitates its removal from late endosomal organelles (LEs). This lowers LE ceramide in parallel with and independent of acid ceramidase-dependent catabolism. In LAPTM4B-silenced cells, LE sphingolipid accumulation is accompanied by lysosomal membrane destabilization. However, these cells resist ceramide-driven caspase-3 activation and apoptosis induced by chemotherapeutic agents or gene silencing. Conversely, LAPTM4B overexpression reduces LE ceramide and stabilizes lysosomes but sensitizes to drug-induced caspase-3 activation. Together, these data uncover a cellular ceramide export route from LEs and identify LAPTM4B as its regulator. By compartmentalizing ceramide, LAPTM4B controls key sphingolipid-mediated cell death mechanisms and emerges as a candidate for sphingolipid-targeting cancer therapies.


Assuntos
Apoptose/fisiologia , Ceramidas/metabolismo , Endossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Oncogênicas/metabolismo , Antraciclinas/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Transporte Biológico , Linhagem Celular Tumoral , Inativação Gênica , Humanos , Membranas Intracelulares/metabolismo , Proteínas de Membrana/genética , Proteínas Oncogênicas/genética , Paclitaxel/farmacologia , Ligação Proteica , RNA Interferente Pequeno/genética , Esfingomielinas/metabolismo
11.
Biochim Biophys Acta ; 1853(9): 2173-82, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25892494

RESUMO

Caveolae are plasma membrane invaginations enriched in sterols and sphingolipids. Sphingosine kinase 1 (SK1) is an oncogenic protein that converts sphingosine to sphingosine 1-phosphate (S1P), which is a messenger molecule involved in calcium signaling. Caveolae contain calcium responsive proteins, but the effects of SK1 or S1P on caveolar calcium signaling have not been investigated. We generated a Caveolin-1-Aequorin fusion protein (Cav1-Aeq) that can be employed for monitoring the local calcium concentration at the caveolae ([Ca²âº]cav). In HeLa cells, Cav1-Aeq reported different [Ca²âº] as compared to the plasma membrane [Ca²âº] in general (reported by SNAP25-Aeq) or as compared to the cytosolic [Ca²âº] (reported by cyt-Aeq). The Ca²âº signals detected by Cav1-Aeq were significantly attenuated when the caveolar structures were disrupted by methyl-ß-cyclodextrin, suggesting that the caveolae are specific targets for Ca²âº signaling. HeLa cells overexpressing SK1 showed increased [Ca²âº]cav during histamine-induced Ca²âº mobilization in the absence of extracellular Ca²âº as well as during receptor-operated Ca²âº entry (ROCE). The SK1-induced increase in [Ca²âº]cav during ROCE was reverted by S1P receptor antagonists. In accordance, pharmacologic inhibition of SK1 reduced the [Ca²âº]cav during ROCE. S1P treatment stimulated the [Ca²âº]cav upon ROCE. The Ca²âº responses at the plasma membrane in general were not affected by SK1 expression. In summary, our results show that SK1/S1P-signaling regulates Ca²âº signals at the caveolae. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.


Assuntos
Equorina/biossíntese , Sinalização do Cálcio/fisiologia , Cavéolas/metabolismo , Caveolina 1/biossíntese , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Equorina/genética , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Caveolina 1/genética , Células HeLa , Humanos , Lisofosfolipídeos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Recombinantes de Fusão/genética , Esfingosina/análogos & derivados , Esfingosina/farmacologia
12.
Dev Cell ; 27(3): 249-62, 2013 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-24209575

RESUMO

Mammalian cells acquire cholesterol, a major membrane constituent, via low-density lipoprotein (LDL) uptake. However, the mechanisms by which LDL cholesterol reaches the plasma membrane (PM) have remained obscure. Here, we applied LDL labeled with BODIPY cholesteryl linoleate to identify this pathway in living cells. The egress of BODIPY cholesterol (BC) from late endosomal (LE) organelles was dependent on acid lipase and Niemann-Pick C1 (NPC1) protein, as for natural cholesterol. We show that NPC1 was needed to recruit Rab8a to BC-containing LEs, and Rab8a enhanced the motility and segregation of BC- and CD63-positive organelles from lysosomes. The BC carriers docked to the cortical actin by a Rab8a- and Myosin5b (Myo5b)-dependent mechanism, typically in the proximity of focal adhesions (FAs). LDL increased the number and dynamics of FAs and stimulated cell migration in an acid lipase, NPC1, and Rab8a-dependent fashion, providing evidence that this cholesterol delivery route to the PM is important for cell movement.


Assuntos
Actinas/metabolismo , Membrana Celular/metabolismo , LDL-Colesterol/metabolismo , Miosinas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Transporte Biológico , Proteínas de Transporte/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Células Cultivadas , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Imunofluorescência , Adesões Focais/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/metabolismo , Microscopia Imunoeletrônica , Proteína C1 de Niemann-Pick , Porfobilinogênio/análogos & derivados , Porfobilinogênio/farmacologia , Tetraspanina 30/metabolismo , Cicatrização/efeitos dos fármacos
13.
J Cell Sci ; 126(Pt 17): 3961-71, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23813961

RESUMO

N-myc downstream-regulated gene 1 (NDRG1) mutations cause Charcot-Marie-Tooth disease type 4D (CMT4D). However, the cellular function of NDRG1 and how it causes CMT4D are poorly understood. We report that NDRG1 silencing in epithelial cells results in decreased uptake of low-density lipoprotein (LDL) due to reduced LDL receptor (LDLR) abundance at the plasma membrane. This is accompanied by the accumulation of LDLR in enlarged EEA1-positive endosomes that contain numerous intraluminal vesicles and sequester ceramide. Concomitantly, LDLR ubiquitylation is increased but its degradation is reduced and ESCRT (endosomal sorting complex required for transport) proteins are downregulated. Co-depletion of IDOL (inducible degrader of the LDLR), which ubiquitylates the LDLR and promotes its degradation, rescues plasma membrane LDLR levels and LDL uptake. In murine oligodendrocytes, Ndrg1 silencing not only results in reduced LDL uptake but also in downregulation of the oligodendrocyte differentiation factor Olig2. Both phenotypes are rescued by co-silencing of Idol, suggesting that ligand uptake through LDLR family members controls oligodendrocyte differentiation. These findings identify NDRG1 as a novel regulator of multivesicular body formation and endosomal LDLR trafficking. The deficiency of functional NDRG1 in CMT4D might impair lipid processing and differentiation of myelinating cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Doença de Charcot-Marie-Tooth/metabolismo , Endossomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Receptores de LDL/metabolismo , Doença de Refsum/metabolismo , Androstenos/farmacologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Doença de Charcot-Marie-Tooth/genética , Regulação para Baixo , Endocitose/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipoproteínas LDL/metabolismo , Camundongos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Transporte Proteico/genética , Interferência de RNA , RNA Interferente Pequeno , Doença de Refsum/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
15.
Traffic ; 13(9): 1234-43, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22607065

RESUMO

The late endosomal/lysosomal compartment (LE/LY) plays a key role in sphingolipid breakdown, with the last degradative step catalyzed by acid ceramidase. The released sphingosine can be converted to ceramide in the ER and transported by ceramide transfer protein (CERT) to the Golgi for conversion to sphingomyelin. The mechanism by which sphingosine exits LE/LY is unknown but Niemann-Pick C1 protein (NPC1) has been suggested to be involved. Here, we used sphingomyelin, ceramide and sphingosine labeled with [(3)H] in carbon-3 of the sphingosine backbone and targeted them to LE/LY in low-density lipoprotein (LDL) particles. These probes traced LE/LY sphingolipid degradation and recycling as suggested by (1) accumulation of [(3)H]-sphingomyelin-derived [(3)H]-ceramide and depletion of [(3)H]-sphingosine upon acid ceramidase depletion, and (2) accumulation of [(3)H]-sphingosine-derived [(3)H]-ceramide and attenuation of [(3)H]-sphingomyelin synthesis upon CERT depletion. NPC1 silencing did not result in the accumulation of [(3)H]-sphingosine derived from [(3)H]-sphingomyelin/LDL or [(3)H]-ceramide/LDL. Additional evidence against NPC1 playing a significant role in LE/LY sphingosine export was obtained in experiments using the [(3)H]-sphingolipids or a fluorescent sphingosine derivative in NPC1 knock-out cells. Instead, NPC1-deficient cells displayed an increased affinity for sphingosine independently of protein-mediated lipid transport. This likely contributes to the increased sphingosine content of NPC1 cells.


Assuntos
Glicoproteínas de Membrana/deficiência , Esfingosina/metabolismo , Animais , Células CHO , Proteínas de Transporte , Linhagem Celular Tumoral , Ceramidas/metabolismo , Cricetinae , Cricetulus , Endossomos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lipoproteínas LDL/metabolismo , Lisossomos/metabolismo , Proteína C1 de Niemann-Pick , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno , Esfingolipidoses/metabolismo , Esfingomielinas/metabolismo
16.
Neurobiol Dis ; 46(1): 19-29, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22182690

RESUMO

CLN5 disease, late infantile variant phenotype neuronal ceroid lipofuscinosis, is a severe neurodegenerative disease caused by mutations in the CLN5 gene, which encodes a lysosomal protein of unknown function. Cln5-deficiency in mice leads to loss of thalamocortical neurons, and glial activation, but the underlying mechanisms are poorly understood. We have now studied the gene expression of Cln5 in the mouse brain and show that it increases gradually with age and differs between neurons and glia, with the highest expression in microglia. In Cln5(-/-) mice, we documented early and significant microglial activation that was already evident at 3 months of age. Loss of Cln5 also leads to defective myelination in vitro and in the developing mouse brain. This was accompanied by early alterations in serum lipid profiles, dysfunctional cellular metabolism and lipid transport in Cln5(-/-) mice. Taken together, these data provide significant new information about events associated with Cln5-deficiency, revealing altered myelination and disturbances in lipid metabolism, together with an early neuroimmune response.


Assuntos
Doenças Desmielinizantes/fisiopatologia , Metabolismo dos Lipídeos/fisiologia , Glicoproteínas de Membrana/deficiência , Microglia/metabolismo , Animais , Células Cultivadas , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Metabolismo dos Lipídeos/genética , Transtornos do Metabolismo dos Lipídeos/genética , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/patologia , Proteínas de Membrana Lisossomal , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Lipofuscinoses Ceroides Neuronais/patologia , Neurônios/metabolismo , Neurônios/patologia
17.
Cold Spring Harb Perspect Biol ; 3(8): a004713, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21482741

RESUMO

Eukaryotic cells can synthesize thousands of different lipid molecules that are incorporated into their membranes. This involves the activity of hundreds of enzymes with the task of creating lipid diversity. In addition, there are several, typically redundant, mechanisms to transport lipids from their site of synthesis to other cellular membranes. Biosynthetic lipid transport helps to ensure that each cellular compartment will have its characteristic lipid composition that supports the functions of the associated proteins. In this article, we provide an overview of the biosynthesis of the major lipid constituents of cell membranes, that is, glycerophospholipids, sphingolipids, and sterols, and discuss the mechanisms by which these newly synthesized lipids are delivered to their target membranes.


Assuntos
Membrana Celular/metabolismo , Metabolismo dos Lipídeos , Lipídeos de Membrana/biossíntese , Animais , Humanos
18.
BMC Cell Biol ; 11: 45, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20573281

RESUMO

BACKGROUND: Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates a multitude of cellular functions, including cell proliferation, survival, migration and angiogenesis. S1P mediates its effects either by signaling through G protein-coupled receptors (GPCRs) or through an intracellular mode of action. In this study, we have investigated the mechanism behind S1P-induced survival signalling. RESULTS: We found that S1P protected cells from FasL-induced cell death in an NF-kappaB dependent manner. NF-kappaB was activated by extracellular S1P via S1P2 receptors and Gi protein signaling. Our study also demonstrates that extracellular S1P stimulates cells to rapidly produce and secrete additional S1P, which can further amplify the NF-kappaB activation. CONCLUSIONS: We propose a self-amplifying loop of autocrine S1P with capacity to enhance cell survival. The mechanism provides increased understanding of the multifaceted roles of S1P in regulating cell fate during normal development and carcinogenesis.


Assuntos
Lisofosfolipídeos/biossíntese , NF-kappa B/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Comunicação Autócrina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Proteína Ligante Fas/metabolismo , Retroalimentação Fisiológica , Flavonoides/farmacologia , Humanos , Lisofosfolipídeos/antagonistas & inibidores , Lisofosfolipídeos/genética , Pirazóis/farmacologia , Piridinas/farmacologia , RNA Interferente Pequeno/genética , Receptores de Lisoesfingolipídeo/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Esfingosina/antagonistas & inibidores , Esfingosina/biossíntese , Esfingosina/genética , Transgenes/genética
19.
Circ Res ; 106(4): 720-9, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20056921

RESUMO

RATIONALE: The synthetic sphingosine analog FTY720 is undergoing clinical trials as an immunomodulatory compound, acting primarily via sphingosine 1-phosphate receptor activation. Sphingolipid and cholesterol homeostasis are closely connected but whether FTY720 affects atherogenesis in humans is not known. OBJECTIVE: We examined the effects of FTY720 on the processing of scavenged lipoprotein cholesterol in human primary monocyte-derived macrophages. METHODS AND RESULTS: FTY720 did not affect cholesterol uptake but inhibited its delivery to the endoplasmic reticulum, reducing cellular free cholesterol cytotoxicity. This was accompanied by increased levels of Niemann-Pick C1 protein (NPC1) and ATP-binding cassette transporter (ABC)A1 proteins and increased efflux of endosomal cholesterol to apolipoprotein A-I. These effects were not dependent on sphingosine 1-phosphate receptor activation. Instead, FTY720 stimulated the production of 27-hydroxycholesterol, an endogenous ligand of the liver X receptor, leading to liver X receptor-induced upregulation of ABCA1. Fluorescently labeled FTY720 was targeted to late endosomes, and the FTY720-induced upregulation of ABCA1 was NPC1-dependent, but the endosomal exit of FTY720 itself was not. CONCLUSIONS: We conclude that FTY720 decreases cholesterol toxicity in primary human macrophages by reducing the delivery of scavenged lipoprotein cholesterol to the endoplasmic reticulum and facilitating its release to physiological extracellular acceptors. Furthermore, FTY720 stimulates 27-hydroxycholesterol production, providing an explanation for the atheroprotective effects and identifying a novel mechanism by which FTY720 modulates signaling.


Assuntos
Aterosclerose/prevenção & controle , Colesterol/metabolismo , Hidroxicolesteróis/metabolismo , Macrófagos/efeitos dos fármacos , Propilenoglicóis/farmacologia , Esfingosina/análogos & derivados , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Apolipoproteína A-I/metabolismo , Aterosclerose/metabolismo , Transporte Biológico , Proteínas de Transporte/metabolismo , Técnicas de Cultura de Células , Morte Celular , Sobrevivência Celular , Células Cultivadas , Ésteres do Colesterol/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Cloridrato de Fingolimode , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lipoproteínas LDL/metabolismo , Receptores X do Fígado , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteína C1 de Niemann-Pick , Receptores Nucleares Órfãos/agonistas , Receptores Nucleares Órfãos/metabolismo , Receptores Depuradores/efeitos dos fármacos , Receptores Depuradores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/farmacologia , Fatores de Tempo
20.
J Cell Physiol ; 216(1): 245-52, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18431718

RESUMO

The mammalian canonical transient receptor channels (TRPCs) are considered to be candidates for store-operated calcium channels (SOCCs). Many studies have addressed how TRPC3 channels are affected by depletion of intracellular calcium stores. Conflicting results have been shown for TRPC3 regarding its function, and this has been linked to its level of expression in various systems. In the present study, we have investigated how overexpression of TRPC3 interferes with the regulation of intracellular calcium stores. We demonstrate that overexpression of TRPC3 reduces the mobilization of calcium in response to stimulation of the cells with thapsigargin (TG) or the G-protein coupled receptor agonist sphingosine-1-phosphate (S1P). Our results indicate that this is the result of the expression of TRPC3 channels in the endoplasmic reticulum (ER), thus depleting ER calcium stores. OAG evoked calcium entry in cells overexpressing TRPC3, indicating that functional TRPC3 channels were also expressed in the plasma membrane. Taken together, our results show that overexpression of the putative SOCC, TRPC3, actually reduces the calcium content of intracellular stores, but does not enhance agonist-evoked or store-dependent calcium entry. Our results may, in part, explain the conflicting results obtained in previous studies on the actions of TRPC3 channels.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Canais de Cálcio/genética , Calnexina/metabolismo , Linhagem Celular , Diglicerídeos/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Ativação do Canal Iônico , Lisofosfolipídeos/metabolismo , Técnicas de Patch-Clamp , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Canais de Cátion TRPC/genética , Tapsigargina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...