Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 111(21): 211101, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24313471

RESUMO

We show that the recent AMS-02 positron fraction measurement is consistent with a secondary origin for positrons and does not require additional primary sources such as pulsars or dark matter. The measured positron fraction at high energy saturates the previously predicted upper bound for secondary production, obtained by neglecting radiative losses. This coincidence, which will be further tested by upcoming AMS-02 data at higher energy, is a compelling indication for a secondary source. Within the secondary model, the AMS-02 data imply a cosmic ray propagation time in the Galaxy of <10(6) yr and an average traversed interstellar matter density of ~1 cm(-3), comparable to the density of the Milky Way gaseous disk, at a rigidity of 300 GV.

2.
Phys Rev Lett ; 109(5): 051302, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-23006163

RESUMO

In the supersymmetric framework, prior to the electroweak phase transition, the existence of a baryon asymmetry implies the existence of a Higgsino asymmetry. We investigate whether the Higgsino could be a viable asymmetric dark matter candidate. We find that this is indeed possible. Thus, supersymmetry can provide the observed dark matter abundance and, furthermore, relate it with the baryon asymmetry, in which case the puzzle of why the baryonic and dark matter mass densities are similar would be explained. To accomplish this task, two conditions are required. First, the gauginos, squarks, and sleptons must all be very heavy, such that the only electroweak-scale superpartners are the Higgsinos. With this spectrum, supersymmetry does not solve the fine-tuning problem. Second, the temperature of the electroweak phase transition must be low, in the (1-10) GeV range. This condition requires an extension of the minimal supersymmetric standard model.

3.
Phys Rev Lett ; 102(21): 211802, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19519095

RESUMO

New physics at high energy scale often contributes to K0-K0 and D0-D0 mixings in an approximately SU(2)L invariant way. In such a case, the combination of measurements in these two systems is particularly powerful. The resulting constraints can be expressed in terms of misalignments and flavor splittings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...