Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Am J Clin Nutr ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39059708

RESUMO

BACKGROUND: Lactation has been widely associated with optimal neurocognitive development, but the underlying mechanism remains unknown. Human milk oligosaccharides (HMOs) are complex sugars that support brain development, but prior studies examining their associations with cognition have yielded inconsistent findings. OBJECTIVE: To provide a broader understanding of how HMOs jointly influence cognition. METHODS: We used data from an ongoing longitudinal cohort of Latino mother-infant dyads. Human milk samples from 1-month (n = 157) and 6-months (n = 107) postpartum were assessed for the 19 most abundant HMOs. Cognitive performance was assessed at 2-years using the Bayley Scale of Infant and Toddler Development. A partial least squares model identified HMO combinations predictive of cognitive scores. RESULTS: At 1-month, the combination of higher levels of Lacto-N-neotetraose (LNnT), Lacto-N-tetraose (LNT), Lacto-N-fucopentaose III (LNFP-III), 6`Sialyllactose (6`SL), and 2`Fucosyllactose (2`FL) with lower levels of Sialyllacto-N-tetraose b (LSTb), Lacto-N-fucopentaose II (LNFP-II), Fucodisialyllacto-N-hexaose (FDSLNH), and 3-Fucosyllactose (3FL) significantly predicted higher cognitive scores (ß = 0.61 [0.30, 0.92]), explaining an additional 8% of the variance over a model with only nuisance covariates (11%). Additional analyses revealed that the combination of higher LNFP-III and lower LSTb alone explained 5% more of the variation in cognitive scores (ß = 0.66 [0.24, 1.09]). At 6-months (n = 107), higher LNnT, LNT, and LNFP-III and lower 3-fucosyllactose (3FL) and LSTb explained an extra 6% of the variance in cognitive scores (ß = 0.43 [0.12 - 0.75]). CONCLUSIONS: This study highlights specific HMO combinations in early life influencing cognitive performance at 2 years.

2.
bioRxiv ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39005317

RESUMO

Bifidobacteria are among the earliest colonizers of the human gut, conferring numerous health benefits. While multiple Bifidobacterium strains are used as probiotics, accumulating evidence suggests that the individual responses to probiotic supplementation may vary, likely due to a variety of factors, including strain type(s), gut community composition, dietary habits of the consumer, and other health/lifestyle conditions. Given the saccharolytic nature of bifidobacteria, the carbohydrate composition of the diet is one of the primary factors dictating the colonization efficiency of Bifidobacterium strains. Therefore, a comprehensive understanding of bifidobacterial glycan metabolism at the strain level is necessary to rationally design probiotic or synbiotic formulations that combine bacterial strains with glycans that match their nutrient preferences. In this study, we systematically reconstructed 66 pathways involved in the utilization of mono-, di-, oligo-, and polysaccharides by analyzing the representation of 565 curated metabolic functional roles (catabolic enzymes, transporters, transcriptional regulators) in 2973 non-redundant cultured Bifidobacterium isolates and metagenome-assembled genomes (MAGs). Our analysis uncovered substantial heterogeneity in the predicted glycan utilization capabilities at the species and strain level and revealed the presence of a yet undescribed phenotypically distinct subspecies-level clade within the Bifidobacterium longum species. We also identified Bangladeshi isolates harboring unique gene clusters tentatively implicated in the breakdown of xyloglucan and human milk oligosaccharides. Predicted carbohydrate utilization phenotypes were experimentally characterized and validated. Our large-scale genomic analysis considerably expands the knowledge of carbohydrate metabolism in bifidobacteria and provides a foundation for rationally designing single- or multi-strain probiotic formulations of a given bifidobacterial species as well as synbiotic combinations of bifidobacterial strains matched with their preferred carbohydrate substrates.

3.
J Nutr ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069270

RESUMO

BACKGROUND: Multiple studies have demonstrated associations between the early life gut microbiome and incidence of inflammatory and auto-immune disease in childhood. While microbial colonization is necessary for proper immune education, it is not well understood at a mechanistic level how specific communities of bacteria promote immune maturation or drive immune dysfunction in infancy. OBJECTIVE: Here, we aimed to assess whether infant microbial communities with different overall structures differentially influence immune and gastrointestinal development in healthy mice. METHODS: Germ-free mice were inoculated with fecal slurries from Bifidobacterium longum subspecies infantis (B. infantis) positive (BIP) or Bifidobacterium longum subspecies infantis negative (BIN) breastfed infants; half of the mice in each group were also supplemented with a pool of human milk oligosaccharides (HMOs) for 14 days. Cecal microbiome composition and metabolite production, systemic and mucosal immune outcomes, and intestinal morphology were assessed at the end of the study. RESULTS: We show that inoculation with a BIP microbiome results in a remarkably distinct microbial community characterized by higher relative abundances of cecal Clostridium senu stricto, Ruminococcus gnavus, Cellulosilyticum, and Erysipelatoclostridium. The BIP microbiome produced two-fold higher concentrations of cecal butyrate, promoted branched short-chain fatty acid (SCFA) production, and further modulated serotonin, kynurenine, and indole metabolism relative to BIN mice. Further, the BIP microbiome increased the proportions of innate and adaptive immune cells in spleen, while HMO supplementation increased proliferation of MLN cells to PMA and LPS and increased serum IgA and IgG levels. CONCLUSIONS: Different microbiome compositions and HMO supplementation can modulate SCFA and tryptophan metabolism and innate and adaptive immunity in young, healthy mice, with potentially important implications for early childhood health.

4.
Cell Host Microbe ; 32(6): 996-1010.e4, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38870906

RESUMO

The composition and maturation of the early-life microbiota are modulated by a number of perinatal factors, whose interplay in relation to microbial vertical transmission remains inadequately elucidated. Using recent strain-tracking methodologies, we analyzed mother-to-infant microbiota transmission in two different birth environments: hospital-born (vaginal/cesarean) and home-born (vaginal) infants and their mothers. While delivery mode primarily explains initial compositional differences, place of birth impacts transmission timing-being early in homebirths and delayed in cesarean deliveries. Transmission patterns vary greatly across species and birth groups, yet certain species, like Bifidobacterium longum, are consistently vertically transmitted regardless of delivery setting. Strain-level analysis of B. longum highlights relevant and consistent subspecies replacement patterns mainly explained by breastfeeding practices, which drive changes in human milk oligosaccharide (HMO) degrading capabilities. Our findings highlight how delivery setting, breastfeeding duration, and other lifestyle preferences collectively shape vertical transmission, impacting infant gut colonization during early life.


Assuntos
Aleitamento Materno , Leite Humano , Humanos , Feminino , Leite Humano/microbiologia , Recém-Nascido , Lactente , Microbioma Gastrointestinal/fisiologia , Microbiota/fisiologia , Adulto , Bifidobacterium , Transmissão Vertical de Doenças Infecciosas , Gravidez
5.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38853945

RESUMO

Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis worldwide. Currently, there are no targeted antivirals for the treatment of HuNoV infection. Histo-blood group antigens (HBGAs) on the intestinal epithelium are cellular attachment factors for HuNoVs; molecules that block the binding of HuNoVs to HBGAs thus have the potential to be developed as antivirals. Human milk oligosaccharides (HMOs) are glycans in human milk with structures analogous to HBGAs. HMOs have been shown to act as decoy receptors to prevent the attachment of multiple enteric pathogens to host cells. Previous X-ray crystallography studies have demonstrated the binding of HMO 2'-fucosyllactose (2'FL) in the same pocket as HBGAs for some HuNoV strains. We evaluated the effect of 2'FL on the replication of a globally dominant GII.4 Sydney [P16] HuNoV strain using human intestinal enteroids (HIEs) from adults and children. A significant reduction in GII.4 Sydney [P16] replication was seen in duodenal and jejunal HIEs from multiple adult donors, all segments of the small intestine from an adult organ donor and in two pediatric duodenal HIEs. However, 2'FL did not inhibit HuNoV replication in two infant jejunal HIEs that had significantly lower expression of α1-2-fucosylated glycans. 2'FL can be synthesized in large scale, and safety and tolerance have been assessed previously. Our data suggest that 2'FL has the potential to be developed as a therapeutic for HuNoV gastroenteritis.

6.
Nutrients ; 16(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931150

RESUMO

Growing evidence indicates that human milk oligosaccharides (HMOs) are important bioactive compounds that enhance health and developmental outcomes in breastfed babies. Maternal dietary intake likely contributes to variation in HMO composition, but studies identifying diet-HMO relationships are few and inconsistent. This study aimed to investigate how the maternal intake of macronutrients and micronutrients-specifically proteins, fats, vitamins, and minerals-associated with HMOs at 1 month (n = 210), 6 months (n = 131), and 12 months postpartum (n = 84). Several associations between maternal dietary factors and HMO profiles were identified utilizing partial correlation analysis. For example, maternal free sugar (rho = -0.02, p < 0.01), added sugar (rho = -0.22, p < 0.01), and sugary sweetened beverage (rho = -0.22, p < 0.01) intake were negatively correlated with the most abundant HMO, 2'-fucosyllactose (2'-FL), at 1 month, suggesting that higher sugar consumption was associated with reduced levels of 2'-FL. Further, vitamins D, C, K, and the minerals zinc and potassium were positively correlated with 2'-FL at 1 month (pAll < 0.05). For the longitudinal analysis, a mixed-effects linear regression model revealed significant associations between maternal vitamin intake and HMO profiles over time. For example, for each unit increase in niacin intake, there was a 31.355 nmol/mL increase in 2'-FL concentration (p = 0.03). Overall, the results provide additional evidence supporting a role for maternal nutrition in shaping HMO profiles, which may inform future intervention strategies with the potential of improving infant growth and development through optimal HMO levels in mothers' milk.


Assuntos
Dieta , Hispânico ou Latino , Fenômenos Fisiológicos da Nutrição Materna , Leite Humano , Oligossacarídeos , Humanos , Leite Humano/química , Feminino , Oligossacarídeos/análise , Adulto , Adulto Jovem , Lactente , Aleitamento Materno , Trissacarídeos/análise , Vitaminas/análise , Vitaminas/administração & dosagem , Estudos Longitudinais , Mães
7.
Breastfeed Med ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38699872

RESUMO

Introduction/Background: Some women produce antenatal colostrum during pregnancy and feed it to their baby after birth. However, the composition of antenatal colostrum and how it compares to postnatal colostrum and mature milk are not well described. In fact, there are currently no data on the composition of antenatal colostrum when it comes to human milk oligosaccharides (HMOs), the third most abundant solid human milk component after lactose and lipids. Case Presentation: We report a case of a single healthy donor who collected antenatal colostrum and urine from 19 weeks of gestation all the way to mature milk at 3 months postpartum. We analyzed all samples for HMO composition using high-performance liquid chromatography and for lactose concentrations using an enzymatic assay. Results: The entire spectrum of HMOs typical of a nonsecretor was already present in antenatal colostrum at 19 weeks gestation with a total concentration of 7.5 mg/mL. The HMO concentration further increased to over 12.5 mg/mL at 30 weeks gestation and then declined throughout the remainder of pregnancy and continued to decline in the postpartum period with concentrations of less than 5 mg/mL at 12 weeks postpartum. Concentrations of some of the individual HMOs as well as lactose changed significantly at the time of birth. HMO composition in antenatal colostrum was different in time-matched urine samples. Conclusion: Measuring HMOs in maternal urine does not fully capture the composition of HMOs in antenatal colostrum. Feeding antenatal colostrum to the newborn baby provides the entire set of different HMOs at high concentrations.

8.
J Perinatol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760580

RESUMO

OBJECTIVE: Preterm infants need enrichment of human milk (HM) for optimal growth. This study evaluated a novel, point-of-care human milk concentration (HMC) process for water removal from fresh HM samples by passive osmotic concentration. STUDY DESIGN: Nineteen fresh HM samples were concentrated by incubation with the HMC devices for 3 h at 4 °C. Pre- and post-concentration HM samples were compared by HM properties for: pH, osmolality, macronutrients, enzyme activity, bioactive, and total cell viability. RESULTS: Passive osmotic concentration reduced HM volume by an average of 16.3% ± 3.8% without a significant effect on pH or cell viability. Ten of the 41 HM components did not differ significantly (p > 0.05) between pre- and post-concentration samples. Twenty-three increased within the expected range by volume reduction. Six increased more than expected, two less than expected, and none decreased significantly. CONCLUSION: Passive osmotic concentration of fresh HM can concentrate HM components by selective removal of water. HM osmolality and pH remained within neonatal feeding parameters.

9.
Nutrients ; 16(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674890

RESUMO

Human milk oligosaccharides (HMOs) are bioactive factors that benefit neonatal health, but little is known about effects on growth in very preterm infants (<32 weeks' gestation). We aimed to quantify HMO concentrations in human milk fed to very preterm infants during the neonatal hospitalization and investigate associations of HMOs with infant size and body composition at term-equivalent age. In 82 human-milk-fed very preterm infants, we measured HMO concentrations at two time points. We measured anthropometrics and body composition with air displacement plethysmography at term-equivalent age. We calculated means of individual and total HMOs, constructed tertiles of mean HMO concentrations, and assessed differences in outcomes comparing infants in the highest and intermediate tertiles with the lowest tertile using linear mixed effects models, adjusted for potential confounders. The mean (SD) infant gestational age was 28.2 (2.2) weeks, and birthweight was 1063 (386) grams. Exposure to the highest (vs. lowest) tertile of HMO concentrations was not associated with anthropometric or body composition z-scores at term-corrected age. Exposure to the intermediate (vs. lowest) tertile of 3FL was associated with a greater head circumference z-score (0.61, 95% CI 0.15, 1.07). Overall, the results do not support that higher HMO intakes influence growth outcomes in this very preterm cohort.


Assuntos
Composição Corporal , Idade Gestacional , Leite Humano , Oligossacarídeos , Humanos , Leite Humano/química , Recém-Nascido , Oligossacarídeos/análise , Feminino , Masculino , Fenômenos Fisiológicos da Nutrição do Lactente , Recém-Nascido Prematuro/crescimento & desenvolvimento , Desenvolvimento Infantil , Peso ao Nascer , Lactente Extremamente Prematuro/crescimento & desenvolvimento
10.
mSystems ; 9(4): e0029424, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38530054

RESUMO

Maternal secretor status is one of the determinants of human milk oligosaccharides (HMOs) composition, which, in turn, influences the gut microbiota composition of infants. To understand if this change in gut microbiota impacts immune cell composition, intestinal morphology, and gene expression, 21-day-old germ-free C57BL/6 mice were transplanted with fecal microbiota from infants whose mothers were either secretors (SMM) or non-secretors (NSM) or from infants consuming dairy-based formula (MFM). For each group, one set of mice was supplemented with HMOs. HMO supplementation did not significantly impact the microbiota diversity; however, SMM mice had a higher abundance of genus Bacteroides, Bifidobacterium, and Blautia, whereas, in the NSM group, there was a higher abundance of Akkermansia, Enterocloster, and Klebsiella. In MFM, gut microbiota was represented mainly by Parabacteroides, Ruminococcaceae_unclassified, and Clostrodium_sensu_stricto. In mesenteric lymph node, Foxp3+ T cells and innate lymphoid cells type 2 were increased in MFM mice supplemented with HMOs, while in the spleen, they were increased in SMM + HMOs mice. Similarly, serum immunoglobulin A was also elevated in MFM + HMOs group. Distinct global gene expression of the gut was observed in each microbiota group, which was enhanced with HMOs supplementation. Overall, our data show that distinct infant gut microbiota due to maternal secretor status or consumption of dairy-based formula and HMO supplementation impacts immune cell composition, antibody response, and intestinal gene expression in a mouse model. IMPORTANCE: Early life factors like neonatal diet modulate gut microbiota, which is important for the optimal gut and immune function. One such factor, human milk oligosaccharides (HMOs), the composition of which is determined by maternal secretor status, has a profound effect on infant gut microbiota. However, how the infant gut microbiota composition determined by maternal secretor status or consumption of infant formula devoid of HMOs impacts infant intestinal ammorphology, gene expression, and immune signature is not well explored. This study provides insights into the differential establishment of infant microbiota derived from infants fed by secretor or non-secretor mothers milk or those consuming infant formula and demonstrates that the secretor status of mothers promotes Bifidobacteria and Bacteroides sps. establishment. This study also shows that supplementation of pooled HMOs in mice changed immune cell composition in the spleen and mesenteric lymph nodes and immunoglobulins in circulation. Hence, this study highlights that maternal secretor status has a role in infant gut microbiota composition, and this, in turn, can impact host gut and immune system.


Assuntos
Imunidade Inata , Microbiota , Lactente , Feminino , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos/metabolismo , Leite Humano/química , Sistema Imunitário/metabolismo , Oligossacarídeos/análise , Bifidobacterium/genética
11.
Front Nutr ; 11: 1303822, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544749

RESUMO

Introduction: Maternal obesity is associated with increased concentrations of human milk (HM) obesogenic hormones, pro-inflammatory cytokines, and oligosaccharides (HMOs) that have been associated with infant growth and adiposity. The objective of this pilot study was to determine if adherence to a Mediterranean meal plan during lactation modulates macronutrients and bioactive molecules in human milk from mothers with obesity. Methods: Sixteen healthy, exclusively breastfeeding women with obesity (body mass index ≥30 kg/m2) enrolled between 4 and 5 months postpartum. The women followed a 4-week Mediterranean meal plan which was provided at no cost. Maternal and infant anthropometrics, HM composition, and infant intakes were measured at enrollment and at weeks 2 and 4 of the intervention. Thirteen mother-infant dyads completed the study. Additionally, participants from an adjacent, observational cohort who had obesity and who collected milk at 5 and 6 months postpartum were compared to this cohort. Results: Participants' healthy eating index scores improved (+27 units, p < 0.001), fat mass index decreased (-4.7%, p < 0.001), and daily energy and fat intake were lower (-423.5 kcal/day, p < 0.001 and-32.7 g/day, p < 0.001, respectively) following the intervention. While HM macronutrient concentrations did not change, HM leptin, total human milk oligosaccharides (HMOs), HMO-bound fucose, Lacto-N-fucopentaose (LNFP)-II, LNFP-III, and difucosyllacto-N-tetrose (DFLNT) concentrations were lower following the intervention. Infant intakes of leptin, tumor necrosis factor (TNF)-α, total HMOs, HMO-bound fucose, LNFP-III and DFLNT were lower following the intervention. Specific components of the maternal diet (protein and fat) and specific measures of maternal diet quality (protein, dairy, greens and beans, fruit and vegetables) were associated with infant intakes and growth. Discussion: Adherence to a Mediterranean meal plan increases dietary quality while reducing total fat and caloric intake. In effect, body composition in women with obesity improved, HM composition and infants' intakes were modulated. These findings provide, for the first time, evidence-based data that enhancing maternal dietary quality during lactation may promote both maternal and child health. Longer intervention studies examining the impact of maternal diet quality on HM composition, infant growth, and infant development are warranted.

12.
Nutrients ; 16(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474771

RESUMO

Human milk oligosaccharides (HMOs) are a set of complex carbohydrates and the third largest solid component of human milk, after lactose and lipids. To date, over 150 HMOs have been identified and the diversity of structures produced by lactating women is influenced by maternal genetics as well as other maternal, infant, and environmental factors. While the concentrations of individual HMOs have been shown to vary between individuals and throughout the course of lactation, the variability of HMO concentration profiles following different pregnancies occurring in the same woman is presently unknown. As such, the objective of this study was to compare HMO concentrations in human milk samples provided by the same women (n = 34) following repeat pregnancies. We leveraged existing human milk samples and metadata from the UC San Diego Human Milk Research Biorepository (HMB) and measured the concentrations of the 19 most abundant HMOs using high-performance liquid chromatography with fluorescence detection (HPLC-FL). By assessing dissimilarities in HMO concentration profiles, as well as concentration trends in individual structures between pregnancies of each participant, we discovered that HMO profiles largely follow a highly personalized and predictable trajectory following different pregnancies irrespective of non-genetic influences. In conclusion, this is the first study to assess the interactions between parity and time following delivery on variations in HMO compositions.


Assuntos
Lactação , Leite Humano , Lactente , Gravidez , Humanos , Feminino , Leite Humano/química , Aleitamento Materno , Oligossacarídeos/análise , Cromatografia Líquida de Alta Pressão
13.
Sci Rep ; 14(1): 6730, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509153

RESUMO

Human milk oligosaccharides (HMOs) impact neonate immunity and health outcomes. However, the environmental factors influencing HMO composition remain understudied. This study examined the associations between ambient air pollutant (AAP) exposure and HMOs at 1-month postpartum. Human milk samples were collected at 1-month postpartum (n = 185). AAP (PM2.5, PM10, NO2) exposure included the 9-month pregnancy period through 1-month postpartum. Associations between AAP with (1) HMO diversity, (2) the sum of sialylated and fucosylated HMOs, (3) 6 a priori HMOs linked with infant health, and (4) all HMOs were examined using multivariable linear regression and principal component analysis (PCA). Exposure to AAP was associated with lower HMO diversity. PM2.5 and PM10 exposure was positively associated with the HMO 3-fucosyllactose (3FL); PM2.5 exposure was positively associated with the sum of total HMOs, sum of fucosylated HMOs, and the HMO 2'-fucosyllactose (2'FL). PCA indicated the PM2.5, PM10, and NO2 exposures were associated with HMO profiles. Individual models indicated that AAP exposure was associated with five additional HMOs (LNFP I, LNFP II, DFLNT, LNH). This is the first study to demonstrate associations between AAP and breast milk HMOs. Future longitudinal studies will help determine the long-term impact of AAP on human milk composition.


Assuntos
Poluição do Ar , Leite Humano , Lactente , Recém-Nascido , Gravidez , Feminino , Humanos , Leite Humano/química , Dióxido de Nitrogênio/análise , Oligossacarídeos/análise , Poluição do Ar/análise , Material Particulado
14.
Sci Rep ; 14(1): 2977, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316895

RESUMO

Links between human milk (HM) and infant development are poorly understood and often focus on individual HM components. Here we apply multi-modal predictive machine learning to study HM and head circumference (a proxy for brain development) among 1022 mother-infant dyads of the CHILD Cohort. We integrated HM data (19 oligosaccharides, 28 fatty acids, 3 hormones, 28 chemokines) with maternal and infant demographic, health, dietary and home environment data. Head circumference was significantly predictable at 3 and 12 months. Two of the most associated features were HM n3-polyunsaturated fatty acid C22:6n3 (docosahexaenoic acid, DHA; p = 9.6e-05) and maternal intake of fish (p = 4.1e-03), a key dietary source of DHA with established relationships to brain function. Thus, using a systems biology approach, we identified meaningful relationships between HM and brain development, which validates our statistical approach, gives credence to the novel associations we observed, and sets the foundation for further research with additional cohorts and HM analytes.


Assuntos
Ácidos Graxos Ômega-3 , Mães , Lactente , Feminino , Animais , Humanos , Leite Humano , Ácidos Docosa-Hexaenoicos , Ácidos Graxos , Aleitamento Materno
15.
Pediatr Res ; 96(1): 159-164, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38191822

RESUMO

BACKGROUND: Lactoferrin is an immuno-modulatory nutrient in human milk that may be neuroprotective. METHODS: In 36 infants born <32 weeks' gestation, we sampled human milk at 14 and 28 days of chronologic age and measured lactoferrin by electrochemiluminescence multiplex immunoassay. Using 3T quantitative brain magnetic resonance imaging scans obtained at term equivalent, we estimated total and regional brain volumes. We compared outcomes between infants exposed to low (bottom tertile, range 0.06-0.13 mg/mL) vs. high (top tertile, range 0.22-0.35 mg/mL) lactoferrin using median regression in models adjusted for gestational age, birth weight z-score, sex, and postmenstrual age. RESULTS: Compared to infants exposed to low lactoferrin, infants exposed to high lactoferrin had 43.9 cc (95% CI: 7.6, 80.4) larger total brain volume, 48.3 cc (95% CI: 12.1, 84.6) larger cortical gray matter, and 3.8 cc (95% CI: 0.7, 7.0) larger deep gray matter volume at term equivalent age. Other regional brain volumes were not statistically different between groups. CONCLUSION: Higher lactoferrin exposure during the neonatal hospitalization was associated with larger total brain and gray matter volumes, suggesting that lactoferrin may have potential as a dietary supplement to enhance brain growth in the neonatal intensive care unit setting. IMPACT: This study suggests that lactoferrin, a whey protein found in human milk, may be beneficial for preterm infant brain development, and therefore has potential as a dietary supplement in the neonatal intensive care unit setting.


Assuntos
Encéfalo , Recém-Nascido Prematuro , Lactoferrina , Imageamento por Ressonância Magnética , Leite Humano , Humanos , Lactoferrina/análise , Leite Humano/química , Recém-Nascido , Recém-Nascido Prematuro/crescimento & desenvolvimento , Feminino , Encéfalo/crescimento & desenvolvimento , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Masculino , Idade Gestacional , Hospitalização
16.
Cell Host Microbe ; 32(2): 181-190.e9, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38228143

RESUMO

The early microbial colonization of the gastrointestinal tract can have long-term impacts on development and health. Keystone species, including Bacteroides spp., are prominent in early life and play crucial roles in maintaining the structure of the intestinal ecosystem. However, the process by which a resilient community is curated during early life remains inadequately understood. Here, we show that a single sialidase, NanH, in Bacteroides fragilis mediates stable occupancy of the intestinal mucosa in early life and regulates a commensal colonization program. This program is triggered by sialylated glycans, including those found in human milk oligosaccharides and intestinal mucus. NanH is required for vertical transmission from dams to pups and promotes B. fragilis dominance during early life. Furthermore, NanH facilitates commensal resilience and recovery after antibiotic treatment in a defined microbial community. Collectively, our study reveals a co-evolutionary mechanism between the host and microbiota mediated through host-derived glycans to promote stable colonization.


Assuntos
Ecossistema , Neuraminidase , Humanos , Bacteroides fragilis , Mucosa Intestinal/microbiologia , Polissacarídeos
17.
Adv Nutr ; 15(1): 100127, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37802214

RESUMO

Human milk (HM) contains macronutrients, micronutrients, and a multitude of other bioactive factors, which can have a long-term impact on infant growth and development. We systematically searched MEDLINE, EMBASE, Cochrane Library, Scopus, and Web of Science to synthesize evidence published between 1980 and 2022 on HM components and anthropometry through 2 y of age among term-born infants. From 9992 abstracts screened, 141 articles were included and categorized based on their reporting of HM micronutrients, macronutrients, or bioactive components. Bioactives including hormones, HM oligosaccharides (HMOs), and immunomodulatory components are reported here, based on 75 articles from 69 unique studies reporting observations from 9980 dyads. Research designs, milk collection strategies, sampling times, geographic and socioeconomic settings, reporting practices, and outcomes varied considerably. Meta-analyses were not possible because data collection times and reporting were inconsistent among the studies included. Few measured infant HM intake, adjusted for confounders, precisely captured breastfeeding exclusivity, or adequately described HM collection protocols. Only 5 studies (6%) had high overall quality scores. Hormones were the most extensively examined bioactive with 46 articles (n = 6773 dyads), compared with 13 (n = 2640 dyads) for HMOs and 12 (n = 1422 dyads) for immunomodulatory components. Two studies conducted untargeted metabolomics. Leptin and adiponectin demonstrated inverse associations with infant growth, although several studies found no associations. No consistent associations were found between individual HMOs and infant growth outcomes. Among immunomodulatory components in HM, IL-6 demonstrated inverse relationships with infant growth. Current research on HM bioactives is largely inconclusive and is insufficient to address the complex composition of HM. Future research should ideally capture HM intake, use biologically relevant anthropometrics, and integrate components across categories, embracing a systems biology approach to better understand how HM components work independently and synergistically to influence infant growth.


Assuntos
Aleitamento Materno , Leite Humano , Lactente , Feminino , Criança , Humanos , Composição Corporal , Antropometria , Micronutrientes
18.
Eur J Clin Nutr ; 78(4): 351-355, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38057412

RESUMO

Supplementation with folic acid versus (6S)-5-methyltetrahydrofolic acid (5-MTHF) results in different folate forms in human milk, with folic acid increasing unmetabolized folic acid (UMFA) at the expense of reduced folate forms. It is unknown whether folate forms present in human milk have further effects on human milk composition, such as human milk oligosaccharide (HMO) concentrations. We randomized 60 pregnant women in Canada to 0.6 mg/day folic acid or (6S)-5-MTHF. Human milk folate forms (LC-MS/MS) and nineteen HMOs (HPLC) were quantified at 1 week postpartum. Linear regression and causal mediation analysis were used to evaluate the effect of folate supplementation on HMO concentrations, and possible mediation by concentrations of UMFA and reduced folate forms in human milk (controlling for secretor status and parity). HMO concentrations were not different between groups, with no evidence of mediation by reduced folate forms; however, increased UMFA was associated with reduced concentrations of total HMOs and 3'-sialyllactose.


Assuntos
Ácido Fólico , Leite Humano , Tetra-Hidrofolatos , Feminino , Humanos , Gravidez , Ácido Fólico/farmacologia , Cromatografia Líquida , Suplementos Nutricionais , Espectrometria de Massas em Tandem
19.
Pediatr Res ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052861

RESUMO

BACKGROUND: We aimed to estimate associations between human milk oligosaccharides (HMOs) and infant growth (length-for-age (LAZ) and weight-for-length (WLZ) z-scores) at 12 months postnatal age. METHODS: In this secondary analysis of data from a maternal vitamin D trial in Dhaka, Bangladesh (N = 192), absolute concentrations of HMOs were measured in 13 ± 1 week(s) postpartum milk samples, infant anthropometric measurements were obtained soon after birth and at 12 months postpartum, and infant feeding was classified during 6 months postpartum. Associations between individual HMOs or HMO groups and LAZ or WLZ were estimated by multivariable linear regression adjusting for infant feeding pattern, maternal secretor status, and other potential confounders. RESULTS: The concentrations of 6'sialyllactose, lacto-N-neotetraose, and the non-fucosylated non-sialylated HMOs were inversely associated with LAZ at 12 months of age, whereas the fucosylated non-sialylated HMO concentration was positively associated with LAZ at 12 months. These associations were robust in analyses restricted to infants who were primarily exclusively/predominantly fed human milk during the first 3 (or 6) months. CONCLUSIONS: Since HMOs are both positively and negatively associated with postnatal growth, there is a need for randomized trials to estimate the causal benefits and risks of exogenously administered HMOs on infant growth and other health outcomes. IMPACT: 6'sialyllactose, lacto-N-neotetraose, and the non-fucosylated non-sialylated human milk oligosaccharides (HMOs) were inversely associated with length-for-age z-scores (LAZ) at 12 months, whereas the fucosylated non-sialylated HMO concentration was positively associated with LAZ at 12 months among Bangladeshi infants. Associations between individual and grouped HMOs with infant length growth at 12 months were as strong or stronger in analyses restricted to infants who were exclusively or predominantly fed human milk up to 3 (or 6) months. Randomized trials are needed to characterize the effects of specific HMOs on infant growth, particularly in countries where postnatal linear growth faltering is common.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...