Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(22): e2310864121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38781213

RESUMO

IL-22 plays a critical role in defending against mucosal infections, but how IL-22 production is regulated is incompletely understood. Here, we show that mice lacking IL-33 or its receptor ST2 (IL-1RL1) were more resistant to Streptococcus pneumoniae lung infection than wild-type animals and that single-nucleotide polymorphisms in IL33 and IL1RL1 were associated with pneumococcal pneumonia in humans. The effect of IL-33 on S. pneumoniae infection was mediated by negative regulation of IL-22 production in innate lymphoid cells (ILCs) but independent of ILC2s as well as IL-4 and IL-13 signaling. Moreover, IL-33's influence on IL-22-dependent antibacterial defense was dependent on housing conditions of the mice and mediated by IL-33's modulatory effect on the gut microbiota. Collectively, we provide insight into the bidirectional crosstalk between the innate immune system and the microbiota. We conclude that both genetic and environmental factors influence the gut microbiota, thereby impacting the efficacy of antibacterial immune defense and susceptibility to pneumonia.


Assuntos
Imunidade Inata , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina 22 , Interleucina-33 , Interleucinas , Streptococcus pneumoniae , Animais , Interleucina-33/imunologia , Interleucina-33/genética , Interleucina-33/metabolismo , Interleucinas/metabolismo , Interleucinas/imunologia , Interleucinas/genética , Camundongos , Streptococcus pneumoniae/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/imunologia , Humanos , Camundongos Knockout , Microbiota/imunologia , Camundongos Endogâmicos C57BL , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/microbiologia , Microbioma Gastrointestinal/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Polimorfismo de Nucleotídeo Único
2.
Sci Rep ; 13(1): 20936, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017026

RESUMO

Influenza A virus (IAV) defective interfering particles (DIPs) are considered as new promising antiviral agents. Conventional DIPs (cDIPs) contain a deletion in the genome and can only replicate upon co-infection with infectious standard virus (STV), during which they suppress STV replication. We previously discovered a new type of IAV DIP "OP7" that entails genomic point mutations and displays higher antiviral efficacy than cDIPs. To avoid safety concerns for the medical use of OP7 preparations, we developed a production system that does not depend on infectious IAV. We reconstituted a mixture of DIPs consisting of cDIPs and OP7 chimera DIPs, in which both harbor a deletion in their genome. To complement the defect, the deleted viral protein is expressed by the suspension cell line used for production in shake flasks. Here, DIP preparations harvested are not contaminated with infectious virions, and the fraction of OP7 chimera DIPs depended on the multiplicity of infection. Intranasal administration of OP7 chimera DIP material was well tolerated in mice. A rescue from an otherwise lethal IAV infection and no signs of disease upon OP7 chimera DIP co-infection demonstrated the remarkable antiviral efficacy. The clinical development of this new class of broad-spectrum antiviral may contribute to pandemic preparedness.


Assuntos
Coinfecção , Vírus da Influenza A , Influenza Humana , Animais , Camundongos , Humanos , Vírus Defeituosos/genética , Vírus da Influenza A/genética , Replicação Viral , Antivirais/farmacologia
3.
mSystems ; 7(6): e0045922, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36346236

RESUMO

The tracking of pathogen burden and host responses with minimally invasive methods during respiratory infections is central for monitoring disease development and guiding treatment decisions. Utilizing a standardized murine model of respiratory influenza A virus (IAV) infection, we developed and tested different supervised machine learning models to predict viral burden and immune response markers, i.e., cytokines and leukocytes in the lung, from hematological data. We performed independently in vivo infection experiments to acquire extensive data for training and testing of the models. We show here that lung viral load, neutrophil counts, cytokines (such as gamma interferon [IFN-γ] and interleukin 6 [IL-6]), and other lung infection markers can be predicted from hematological data. Furthermore, feature analysis of the models showed that blood granulocytes and platelets play a crucial role in prediction and are highly involved in the immune response against IAV. The proposed in silico tools pave the path toward improved tracking and monitoring of influenza virus infections and possibly other respiratory infections based on minimally invasively obtained hematological parameters. IMPORTANCE During the course of respiratory infections such as influenza, we do have a very limited view of immunological indicators to objectively and quantitatively evaluate the outcome of a host. Methods for monitoring immunological markers in a host's lungs are invasive and expensive, and some of them are not feasible to perform. Using machine learning algorithms, we show for the first time that minimally invasively acquired hematological parameters can be used to infer lung viral burden, leukocytes, and cytokines following influenza virus infection in mice. The potential of the framework proposed here consists of a new qualitative vision of the disease processes in the lung compartment as a noninvasive tool.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Infecções Respiratórias , Camundongos , Animais , Humanos , Influenza Humana/diagnóstico , Pulmão , Infecções por Orthomyxoviridae/diagnóstico , Citocinas , Interferon gama , Aprendizado de Máquina
4.
iScience ; 25(12): 105540, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36437873

RESUMO

CD47 is an ubiquitously expressed surface molecule with significant impact on immune responses. However, its role for antiviral immunity is not fully understood. Here, we revealed that the expression of CD47 on immune cells seemed to disturb the antiviral immune response as CD47-deficient mice (CD47-/-) showed an augmented clearance of influenza A virus (IAV). Specifically, we have shown that enhanced viral clearance is mediated by alveolar macrophages (aMФ). Although aMФ displayed upregulation of CD47 expression during IAV infection in wildtype mice, depletion of aMФ in CD47-/- mice during IAV infection reversed the augmented viral clearance. We have also demonstrated that CD47 restricts hemoglobin (HB) expression in aMФ after IAV and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection, with HB showing antiviral properties by enhancing the IFN-ß response. Our study showed a negative role for CD47 during antiviral immune responses in the lung by confining HB expression in aMФ.

6.
Cell Mol Immunol ; 19(2): 234-244, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34992275

RESUMO

Global pandemics caused by influenza or coronaviruses cause severe disruptions to public health and lead to high morbidity and mortality. There remains a medical need for vaccines against these pathogens. CMV (cytomegalovirus) is a ß-herpesvirus that induces uniquely robust immune responses in which remarkably large populations of antigen-specific CD8+ T cells are maintained for a lifetime. Hence, CMV has been proposed and investigated as a novel vaccine vector for expressing antigenic peptides or proteins to elicit protective cellular immune responses against numerous pathogens. We generated two recombinant murine CMV (MCMV) vaccine vectors expressing hemagglutinin (HA) of influenza A virus (MCMVHA) or the spike protein of severe acute respiratory syndrome coronavirus 2 (MCMVS). A single injection of MCMVs expressing either viral protein induced potent neutralizing antibody responses, which strengthened over time. Importantly, MCMVHA-vaccinated mice were protected from illness following challenge with the influenza virus, and we excluded that this protection was due to the effects of memory T cells. Conclusively, we show here that MCMV vectors induce not only long-term cellular immunity but also humoral responses that provide long-term immune protection against clinically relevant respiratory pathogens.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunidade Humoral , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação/métodos , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/virologia , Chlorocebus aethiops , Citomegalovirus/imunologia , Cães , Feminino , Células HEK293 , Humanos , Imunidade Celular , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/virologia , Células Vero
7.
Lung ; 200(1): 119-128, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34825965

RESUMO

PURPOSE: Transport of secretory immunoglobulin A (SIgA) through the airway epithelial cell barrier into the mucosal lumen by the polymeric immunoglobulin receptor (pIgR) is an important mechanism of respiratory mucosal host defense. Identification of immunomodulating substances that regulate secretory immunity might have therapeutic implications with regard to an improved immune exclusion. Thus, we sought to analyze secretory immunity under homeostatic and immunomodulating conditions in different compartments of the murine upper and lower respiratory tract (URT&LRT). METHODS: Pigr gene expression in lung, trachea, and nasal-associated lymphoid tissue (NALT) of germ-free mice, specific pathogen-free mice, mice with an undefined microbiome, as well as LPS- and IFN-γ-treated mice was determined by quantitative real-time PCR. IgA levels in bronchoalveolar lavage (BAL), nasal lavage (NAL), and serum were determined by ELISA. LPS- and IFN-γ-treated mice were colonized with Streptococcus pneumoniae and bacterial CFUs were determined in URT and LRT. RESULTS: Respiratory Pigr expression and IgA levels were dependent on the degree of exposure to environmental microbial stimuli. While immunostimulation with LPS and IFN-γ differentially impacts respiratory Pigr expression and IgA in URT vs. LRT, only prophylactic IFN-γ treatment reduces nasal colonization with S. pneumoniae. CONCLUSION: Airway-associated secretory immunity can be partly modulated by exposure to microbial ligands and proinflammatory stimuli. Prophylactic IFN-γ-treatment modestly improves antibacterial immunity in the URT, but this does not appear to be mediated by SIgA or pIgR.


Assuntos
Imunoglobulina A Secretora , Receptores de Imunoglobulina Polimérica , Mucosa Respiratória , Animais , Antibacterianos/imunologia , Antibacterianos/farmacologia , Imunoglobulina A Secretora/imunologia , Imunoglobulina A Secretora/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Camundongos , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Receptores de Imunoglobulina Polimérica/imunologia , Receptores de Imunoglobulina Polimérica/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo
8.
mBio ; 12(5): e0177621, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34700379

RESUMO

Influenza A virus (IAV) causes respiratory tract disease and is responsible for seasonal and reoccurring epidemics affecting all age groups. Next to typical disease symptoms, such as fever and fatigue, IAV infection has been associated with behavioral alterations presumably contributing to the development of major depression. Previous experiments using IAV/H1N1 infection models have shown impaired hippocampal neuronal morphology and cognitive abilities, but the underlying pathways have not been fully described. In this study, we demonstrate that infection with a low-dose non-neurotrophic H1N1 strain of IAV causes ample peripheral immune response followed by a temporary blood-brain barrier disturbance. Although histological examination did not reveal obvious pathological processes in the brains of IAV-infected mice, detailed multidimensional flow cytometric characterization of immune cells uncovered subtle alterations in the activation status of microglial cells. More specifically, we detected an altered expression pattern of major histocompatibility complex classes I and II, CD80, and F4/80 accompanied by elevated mRNA levels of CD36, CD68, C1QA, and C3, suggesting evolved synaptic pruning. To closer evaluate how these profound changes affect synaptic balance, we established a highly sensitive multiplex flow cytometry-based approach called flow synaptometry. The introduction of this novel technique enabled us to simultaneously quantify the abundance of pre- and postsynapses from distinct brain regions. Our data reveal a significant reduction of VGLUT1 in excitatory presynaptic terminals in the cortex and hippocampus, identifying a subtle dysbalance in glutamatergic synapse transmission upon H1N1 infection in mice. In conclusion, our results highlight the consequences of systemic IAV-triggered inflammation on the central nervous system and the induction and progression of neuronal alterations. IMPORTANCE Influenza A virus (IAV) causes mainly respiratory tract disease with fever and fatigue but is also associated with behavioral alterations in humans. Here, we demonstrate that infection with a low-dose non-neurotrophic H1N1 strain of IAV causes peripheral immune response followed by a temporary blood-brain barrier disturbance. Characterization of immune cells uncovered subtle alterations in the activation status of microglia cells that might reshape neuronal synapses. We established a highly sensitive multiplex flow cytometry-based approach called flow synaptometry to more closely study the synapses. Thus, we detected a specific dysbalance in glutamatergic synapse transmission upon H1N1 infection in mice. In conclusion, our results highlight the consequences of systemic IAV-triggered inflammation on the central nervous system and the induction and progression of neuronal alterations.


Assuntos
Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A , Microglia/metabolismo , Transmissão Sináptica/fisiologia , Animais , Encéfalo/patologia , Quimiocinas , Citocinas , Expressão Gênica , Humanos , Inflamação/virologia , Vírus da Influenza A/genética , Influenza Humana/virologia , Camundongos , Infecções por Orthomyxoviridae/virologia
9.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299148

RESUMO

During influenza A virus (IAV) infections, CD4+ T cell responses within infected lungs mainly involve T helper 1 (Th1) and regulatory T cells (Tregs). Th1-mediated responses favor the co-expression of T-box transcription factor 21 (T-bet) in Foxp3+ Tregs, enabling the efficient Treg control of Th1 responses in infected tissues. So far, the exact accumulation kinetics of T cell subsets in the lungs and lung-draining lymph nodes (dLN) of IAV-infected mice is incompletely understood, and the epigenetic signature of Tregs accumulating in infected lungs has not been investigated. Here, we report that the total T cell and the two-step Treg accumulation in IAV-infected lungs is transient, whereas the change in the ratio of CD4+ to CD8+ T cells is more durable. Within lungs, the frequency of Tregs co-expressing T-bet is steadily, yet transiently, increasing with a peak at Day 7 post-infection. Interestingly, T-bet+ Tregs accumulating in IAV-infected lungs displayed a strongly demethylated Tbx21 locus, similarly as in T-bet+ conventional T cells, and a fully demethylated Treg-specific demethylated region (TSDR) within the Foxp3 locus. In summary, our data suggest that T-bet+ but not T-bet- Tregs are epigenetically stabilized during IAV-induced infection in the lung.


Assuntos
Linfócitos T CD8-Positivos/virologia , Epigênese Genética , Fatores de Transcrição Forkhead/metabolismo , Pulmão/virologia , Infecções por Orthomyxoviridae/virologia , Proteínas com Domínio T/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Fatores de Transcrição Forkhead/genética , Vírus da Influenza A/fisiologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/patologia , Proteínas com Domínio T/genética
10.
Immunity ; 54(4): 648-659.e8, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33667383

RESUMO

Loss of lymphocytes, particularly T cell apoptosis, is a central pathological event after severe tissue injury that is associated with increased susceptibility for life-threatening infections. The precise immunological mechanisms leading to T cell death after acute injury are largely unknown. Here, we identified a monocyte-T cell interaction driving bystander cell death of T cells in ischemic stroke and burn injury. Specifically, we found that stroke induced a FasL-expressing monocyte population, which led to extrinsic T cell apoptosis. This phenomenon was driven by AIM2 inflammasome-dependent interleukin-1ß (IL-1ß) secretion after sensing cell-free DNA. Pharmacological inhibition of this pathway improved T cell survival and reduced post-stroke bacterial infections. As such, this study describes inflammasome-dependent monocyte activation as a previously unstudied cause of T cell death after injury and challenges the current paradigms of post-injury lymphopenia.


Assuntos
Coinfecção/imunologia , Proteínas de Ligação a DNA/imunologia , Tolerância Imunológica/imunologia , Inflamassomos/imunologia , Transdução de Sinais/imunologia , Animais , Apoptose/imunologia , Infecções Bacterianas/imunologia , Queimaduras/imunologia , Queimaduras/microbiologia , Coinfecção/microbiologia , Humanos , Interleucina-1beta/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/microbiologia , Linfócitos T/imunologia
12.
PLoS Pathog ; 15(9): e1008036, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31525249

RESUMO

Cytomegalovirus (CMV) is a ubiquitous ß-herpesvirus that establishes life-long latent infection in a high percentage of the population worldwide. CMV induces the strongest and most durable CD8+ T cell response known in human clinical medicine. Due to its unique properties, the virus represents a promising candidate vaccine vector for the induction of persistent cellular immunity. To take advantage of this, we constructed a recombinant murine CMV (MCMV) expressing an MHC-I restricted epitope from influenza A virus (IAV) H1N1 within the immediate early 2 (ie2) gene. Only mice that were immunized intranasally (i.n.) were capable of controlling IAV infection, despite the greater potency of the intraperitoneally (i.p.) vaccination in inducing a systemic IAV-specific CD8+ T cell response. The protective capacity of the i.n. immunization was associated with its ability to induce IAV-specific tissue-resident memory CD8+ T (CD8TRM) cells in the lungs. Our data demonstrate that the protective effect exerted by the i.n. immunization was critically mediated by antigen-specific CD8+ T cells. CD8TRM cells promoted the induction of IFNγ and chemokines that facilitate the recruitment of antigen-specific CD8+ T cells to the lungs. Overall, our results showed that locally applied MCMV vectors could induce mucosal immunity at sites of entry, providing superior immune protection against respiratory infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade nas Mucosas , Vacinas contra Influenza/imunologia , Muromegalovirus/imunologia , Administração Intranasal , Sequência de Aminoácidos , Animais , Linhagem Celular , Quimiocinas/biossíntese , Epitopos de Linfócito T/administração & dosagem , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Feminino , Produtos do Gene env/administração & dosagem , Produtos do Gene env/genética , Produtos do Gene env/imunologia , Vetores Genéticos , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Pulmão/imunologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Muromegalovirus/genética , Células NIH 3T3 , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/virologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
13.
Front Immunol ; 10: 1864, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474978

RESUMO

An overt pro-inflammatory immune response is a key factor contributing to lethal pneumococcal infection in an influenza pre-infected host and represents a potential target for therapeutic intervention. However, there is a paucity of knowledge about the level of contribution of individual cytokines. Based on the predictions of our previous mathematical modeling approach, the potential benefit of IFN-γ- and/or IL-6-specific antibody-mediated cytokine neutralization was explored in C57BL/6 mice infected with the influenza A/PR/8/34 strain, which were subsequently infected with the Streptococcus pneumoniae strain TIGR4 on day 7 post influenza. While single IL-6 neutralization had no effect on respiratory bacterial clearance, single IFN-γ neutralization enhanced local bacterial clearance in the lungs. Concomitant neutralization of IFN-γ and IL-6 significantly reduced the degree of pneumonia as well as bacteremia compared to the control group, indicating a positive effect for the host during secondary bacterial infection. The results of our model-driven experimental study reveal that the predicted therapeutic value of IFN-γ and IL-6 neutralization in secondary pneumococcal infection following influenza infection is tightly dependent on the experimental protocol while at the same time paving the way toward the development of effective immune therapies.


Assuntos
Coinfecção/imunologia , Citocinas/imunologia , Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções Pneumocócicas/imunologia , Streptococcus pneumoniae/imunologia , Algoritmos , Animais , Anticorpos Neutralizantes/imunologia , Coinfecção/microbiologia , Coinfecção/virologia , Citocinas/metabolismo , Feminino , Humanos , Vírus da Influenza A/fisiologia , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-6/imunologia , Interleucina-6/metabolismo , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/virologia , Camundongos Endogâmicos C57BL , Modelos Imunológicos , Testes de Neutralização , Infecções por Orthomyxoviridae/virologia , Infecções Pneumocócicas/microbiologia , Pneumonia/imunologia , Pneumonia/microbiologia , Pneumonia/virologia , Streptococcus pneumoniae/fisiologia
14.
Int J Mol Sci ; 19(9)2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30200513

RESUMO

The respiratory tract is constantly exposed to the environment and displays a favorable niche for colonizing microorganisms. However, the effects of respiratory bacterial carriage on the immune system and its implications for secondary responses remain largely unclear. We have employed respiratory carriage with Bordetella bronchiseptica as the underlying model to comprehensively address effects on subsequent immune responses. Carriage was associated with the stimulation of Bordetella-specific CD4⁺, CD8⁺, and CD4⁺CD25⁺Foxp3⁺ T cell responses, and broad transcriptional activation was observed in CD4⁺CD25⁺ T cells. Importantly, transfer of leukocytes from carriers to acutely B. bronchiseptica infected mice, resulted in a significantly increased bacterial burden in the recipient's upper respiratory tract. In contrast, we found that respiratory B. bronchiseptica carriage resulted in a significant benefit for the host in systemic infection with Listeria monocytogenes. Adaptive responses to vaccination and influenza A virus infection, were unaffected by B. bronchiseptica carriage. These data showed that there were significant immune modulatory processes triggered by B. bronchiseptica carriage, that differentially affect subsequent immune responses. Therefore, our results demonstrated the complexity of immune regulation induced by respiratory bacterial carriage, which can be beneficial or detrimental to the host, depending on the pathogen and the considered compartment.


Assuntos
Bordetella bronchiseptica/imunologia , Coinfecção/imunologia , Infecções Respiratórias/imunologia , Linfócitos T Reguladores/microbiologia , Vacinação , Imunidade Adaptativa/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Infecções por Bordetella/sangue , Infecções por Bordetella/imunologia , Infecções por Bordetella/microbiologia , Infecções por Bordetella/prevenção & controle , Bordetella bronchiseptica/genética , Antígenos CD5/análise , Portador Sadio/imunologia , Portador Sadio/microbiologia , Coinfecção/sangue , Coinfecção/microbiologia , Coinfecção/prevenção & controle , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Listeria monocytogenes/genética , Listeria monocytogenes/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções Respiratórias/sangue , Infecções Respiratórias/prevenção & controle , Linfócitos T Reguladores/imunologia
15.
Front Immunol ; 9: 245, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29497422

RESUMO

The innate immune system senses influenza A virus (IAV) through different pathogen-recognition receptors including Toll-like receptor 7 (TLR7). Downstream of viral recognition natural killer (NK) cells are activated as part of the anti-IAV immune response. Despite the known decisive role of TLR7 for NK cell activation by therapeutic immunostimulatory RNAs, the contribution of TLR7 to the NK cell response following IAV infection has not been addressed. We have analyzed lung cytokine responses as well as the activation, interferon (IFN)-γ production, and cytotoxicity of lung and splenic NK cells following sublethal respiratory IAV infection in wild-type and TLR7ko mice. Early airway IFN-γ levels as well as the induction of lung NK cell CD69 expression and IFN-γ production in response to IAV infection were significantly attenuated in TLR7-deficient hosts. Strikingly, respiratory IAV infection also primed splenic NK cells for IFN-γ production, degranulation, and target cell lysis, all of which were fully dependent on TLR7. At the same time, lung type I IFN levels were significantly reduced in TLR7ko mice early following IAV infection, displaying a potential upstream mechanism of the attenuated NK cell activation observed. Taken together, our data clearly demonstrate a specific role for TLR7 signaling in local and systemic NK cell activation following respiratory IAV infection despite the presence of redundant innate IAV-recognition pathways.


Assuntos
Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Glicoproteínas de Membrana/imunologia , Receptor 7 Toll-Like/imunologia , Animais , Degranulação Celular/imunologia , Modelos Animais de Doenças , Cães , Feminino , Humanos , Imunidade Inata , Interferon gama/imunologia , Interferon gama/metabolismo , Pulmão/imunologia , Pulmão/virologia , Células Madin Darby de Rim Canino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Receptor 7 Toll-Like/genética
16.
Sci Rep ; 7(1): 4972, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28694492

RESUMO

Airway epithelial cells (AECs) display remarkable plasticity in response to infectious stimuli and their functional adaptations are critical for antimicrobial immunity. However, the roles of AECs and humoral mediators to host defense in non-communicable lung inflammation remain elusive. We dissected pulmonary defense against Streptococcus pneumoniae in hosts with pre-existing inflammatory conditions (SPC-HAxTCR-HA mice). Lung tissue transcriptomics and bronchoalveolar lavage fluid (BALF) proteomics revealed an induction of humoral defense mechanisms in inflamed lungs. Accordingly, besides antibacterial proteins and complement components being overrepresented in inflamed lungs, elevated polymeric immunoglobulin receptor (pIgR)-expression in AECs correlated with increased secretory immunoglobulin (SIg) transport. Consequently, opsonization assays revealed augmented pneumococcal coverage by SIgs present in the BALF of SPC-HAxTCR-HA mice, which was associated with enhanced antipneumococcal resistance. These findings emphasize the immunologic potential of AECs as well as their central role in providing antibacterial protection and put forward pIgR as potential target for therapeutic manipulation in infection-prone individuals.


Assuntos
Perfilação da Expressão Gênica/métodos , Pneumonia/imunologia , Proteômica/métodos , Streptococcus pneumoniae/imunologia , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/microbiologia , Modelos Animais de Doenças , Imunoglobulina A Secretora/genética , Imunoglobulina A Secretora/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Pneumonia/genética , Pneumonia/microbiologia , Receptores de Imunoglobulina Polimérica/genética , Receptores de Imunoglobulina Polimérica/metabolismo , Análise de Sequência de RNA
19.
Lung ; 193(6): 947-53, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26319657

RESUMO

PURPOSE: Chronic lung inflammation commonly induces a multitude of structural and functional adaptations within the lung tissue and airspaces. Yet the impact of a persistent inflammatory environment on alveolar macrophages is still incompletely understood. Here, we examined morphology and function of alveolar macrophages in a transgenic mouse model of chronic lung disease. METHODS: Imaging flow cytometry, flow cytometry, and microscopic evaluation of alveolar macrophages isolated from healthy and inflamed lungs were performed. Gene expression of polarization markers was compared by quantitative real-time RT-PCR. The pro-inflammatory immune response of alveolar macrophages toward bacterial ligands was assessed in in vivo clodronate-liposome depletion studies. RESULTS: Chronic lung inflammation is associated with a substantially altered, activated alveolar macrophage morphology, and blunted TNF-α response by these cells following stimulation with ligands derived from the respiratory pathogen Streptococcus pneumoniae. CONCLUSIONS: These results demonstrate pleiotropic effects of pulmonary inflammation on alveolar macrophage phenotype and function and suggest a functional impairment of these cells during infection with airborne pathogens.


Assuntos
Doenças Autoimunes/imunologia , Inflamação/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Pneumopatias/imunologia , Macrófagos Alveolares/imunologia , Receptores Depuradores Classe A/imunologia , Infecções Estreptocócicas/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Doença Crônica , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptores Depuradores Classe A/genética , Streptococcus pneumoniae/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...