Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891949

RESUMO

Childhood glaucoma encompasses congenital and juvenile primary glaucoma, which are heterogeneous, uncommon, and irreversible optic neuropathies leading to visual impairment with a poorly understood genetic basis. Our goal was to identify gene variants associated with these glaucoma types by assessing the mutational burden in 76 matrix metalloproteinase-related genes. We studied 101 childhood glaucoma patients with no identified monogenic alterations using next-generation sequencing. Gene expression was assessed through immunohistochemistry. Functional analysis of selected gene variants was conducted in cultured cells and in zebrafish. Patients presented a higher proportion of rare variants in four metalloproteinase-related genes, including CPAMD8 and ADAMTSL4, compared to controls. ADAMTSL4 protein expression was observed in the anterior segment of both the adult human and zebrafish larvae's eye, including tissues associated with glaucoma. In HEK-293T cells, expression of four ADAMTSL4 variants identified in this study showed that two variants (p.Arg774Trp and p.Arg98Trp) accumulated intracellularly, inducing endoplasmic reticulum stress. Additionally, overexpressing these ADAMTSL4 variants in zebrafish embryos confirmed partial loss-of-function effects for p.Ser719Leu and p.Arg1083His. Double heterozygous functional suppression of adamtsl4 and cpamd8 zebrafish orthologs resulted in reduced volume of both the anterior eye chamber and lens within the chamber, supporting a genetic interaction between these genes. Our findings suggest that accumulation of partial functional defects in matrix metalloproteinase-related genes may contribute to increased susceptibility to early-onset glaucoma and provide further evidence supporting the notion of a complex genetic inheritance pattern underlying the disease.


Assuntos
Glaucoma , Peixe-Zebra , Humanos , Animais , Peixe-Zebra/genética , Glaucoma/genética , Criança , Masculino , Feminino , Pré-Escolar , Células HEK293 , Predisposição Genética para Doença , Mutação , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Adolescente , Lactente , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Estresse do Retículo Endoplasmático/genética
2.
Front Neurol ; 14: 1207616, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37448751

RESUMO

Background: The balance between the activity of the Na+/K+/Cl- cotransporter (NKCC1) that introduces Cl- into the cell and the K+/Cl- cotransporter (KCC2) that transports Cl- outside the cell is critical in determining the inhibitory or excitatory outcome of GABA release. Mounting evidence suggests that the impairment of GABAergic inhibitory neurotransmission plays a crucial role in the pathophysiology of epilepsy, both in patients and animal models. Previous studies indicate that decreased KCC2 expression is linked to audiogenic seizures in GASH/Sal hamsters, highlighting that Cl- imbalance can cause neuronal hyperexcitability. In this study, we aimed to investigate whether the Na+/K+/Cl- cotransporter NKCC1 is also affected by audiogenic seizures and could, therefore, play a role in neuronal hyperexcitability within the GASH/Sal epilepsy model. Methods: NKCC1 protein expression in both the GASH/Sal strain and wild type hamsters was analyzed by immunohistochemistry and Western blotting techniques. Brain regions examined included cortex, hippocampus, hypothalamus, inferior colliculus and pons-medulla oblongata, which were evaluated both at rest and after sound-inducing seizures in GASH/Sal hamsters. A complementary analysis of NKCC1 gene slc12a2 expression was conducted by real-time PCR. Finally, protein and mRNA levels of glutamate decarboxylase GAD67 were measured as an indicator of GABA release. Results: The induction of seizures caused significant changes in NKCC1 expression in epileptic GASH/Sal hamsters, despite the similar brain expression pattern of NKCC1 in GASH/Sal and wild type hamsters in the absence of seizures. Interestingly, the regulation of brain NKCC1 by seizures demonstrated regional specificity, as protein levels exclusively increased in the hippocampus and hypothalamus. Complementary real-time PCR analysis revealed that NKCC1 regulation was post-transcriptional only in the hypothalamus. In addition, seizures also modulated GAD67 mRNA levels in a brain region-specific manner. The increased GAD67 expression in the hippocampus and hypothalamus of the epileptic hamster brain suggests that NKCC1 upregulation overlaps with GABA release in these regions during seizures. Conclusions: Our results indicate that seizure induction causes dysregulation of NKCC1 expression in GASH/Sal animals, which overlaps with changes in GABA release. These observations provide evidence for the critical role of NKCC1 in how seizures affect neuronal excitability, and support NKCC1 contribution to the development of secondary foci of epileptogenic activity.

3.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077382

RESUMO

Myocilin is an enigmatic glaucoma-associated glycoprotein whose biological role remains incompletely understood. To gain novel insight into its normal function, we used transposon-mediated transgenesis to generate the first zebrafish line stably overexpressing myocilin [Tg(actb1:myoc-2A-mCherry)]. qPCR showed an approximately four-fold increased myocilin expression in transgenic zebrafish embryos (144 hpf). Adult (13 months old) transgenic animals displayed variable and age-dependent ocular anterior segment alterations. Almost 60% of two-year-old male, but not female, transgenic zebrafish developed enlarged eyes with severe asymmetrical and variable abnormalities in the anterior segment, characterized by corneal limbus hypertrophy, and thickening of the cornea, iris, annular ligament and lens capsule. The most severe phenotype presented small or absent ocular anterior chamber and pupils, due to iris overgrowth along with dysplastic retinal growth and optic nerve hypertrophy. Immunohistochemistry revealed increased presence of myocilin in most altered ocular tissues of adult transgenic animals, as well as signs of retinal gliosis and expanded ganglion cells and nerve fibers. The preliminary results indicate that these cells contributed to retinal dysplasia. Visual impairment was demonstrated in all old male transgenic zebrafish. Transcriptomic analysis of the abnormal transgenic eyes identified disrupted expression of genes involved in lens, muscular and extracellular matrix activities, among other processes. In summary, the developed transgenic zebrafish provides a new tool to investigate this puzzling protein and provides evidence for the role of zebrafish myocilin in ocular anterior segment and retinal biology, through the influence of extracellular matrix organization and cellular proliferation.


Assuntos
Anormalidades do Olho , Peixe-Zebra , Animais , Proteínas do Citoesqueleto , Matriz Extracelular/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Hipertrofia , Masculino , Camundongos , Camundongos Transgênicos , Retina/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
4.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208498

RESUMO

CYP1B1 loss of function (LoF) is the main known genetic alteration present in recessive primary congenital glaucoma (PCG), an infrequent disease characterized by delayed embryonic development of the ocular iridocorneal angle; however, the underlying molecular mechanisms are poorly understood. To model CYP1B1 LoF underlying PCG, we developed a cyp1b1 knockout (KO) zebrafish line using CRISPR/Cas9 genome editing. This line carries the c.535_667del frameshift mutation that results in the 72% mRNA reduction with the residual mRNA predicted to produce an inactive truncated protein (p.(His179Glyfs*6)). Microphthalmia and jaw maldevelopment were observed in 23% of F0 somatic mosaic mutant larvae (144 hpf). These early phenotypes were not detected in cyp1b1-KO F3 larvae (144 hpf), but 27% of adult (four months) zebrafish exhibited uni- or bilateral craniofacial alterations, indicating the existence of incomplete penetrance and variable expressivity. These phenotypes increased to 86% in the adult offspring of inbred progenitors with craniofacial defects. No glaucoma-related phenotypes were observed in cyp1b1 mutants. Transcriptomic analyses of the offspring (seven dpf) of cyp1b1-KO progenitors with adult-onset craniofacial defects revealed functionally enriched differentially expressed genes related to extracellular matrix and cell adhesion, cell growth and proliferation, lipid metabolism (retinoids, steroids and fatty acids and oxidation-reduction processes that include several cytochrome P450 genes) and inflammation. In summary, this study shows the complexity of the phenotypes and molecular pathways associated with cyp1b1 LoF, with species dependency, and provides evidence for the dysregulation of extracellular matrix gene expression as one of the mechanisms underlying the pathogenicity associated with cyp1b1 disruption.


Assuntos
Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/metabolismo , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Matriz Extracelular/genética , Estudos de Associação Genética , Metabolismo dos Lipídeos/genética , Animais , Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Predisposição Genética para Doença , Camundongos Transgênicos , Peixe-Zebra
5.
Biology (Basel) ; 10(2)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573230

RESUMO

Myocilin is a secreted glycoprotein with a poorly understood biological function and it is mainly known as the first glaucoma gene. To explore the normal role of this protein in vivo we developed a myoc knockout (KO) zebrafish line using CRISPR/Cas9 genome editing. This line carries a homozygous variant (c.236_239delinsAAAGGGGAAGGGGA) that is predicted to result in a loss-of-function of the protein because of a premature termination codon p.(V75EfsX60) that resulted in a significant reduction of myoc mRNA levels. Immunohistochemistry showed the presence of myocilin in wild-type embryonic (96 h post-fertilization) anterior segment eye structures and caudal muscles. The protein was also detected in different adult ocular and non-ocular tissues. No gross macroscopic or microscopic alterations were identified in the KO zebrafish, but, remarkably, we observed absence of females among the adult KO animals and apoptosis in the immature juvenile gonad (28 dpf) of these animals, which is characteristic of male development. Transcriptomic analysis showed that adult KO males overexpressed key genes involved in male sex determination and presented differentially expressed Wnt signalling genes. These results show that myocilin is required for ovary differentiation in zebrafish and provides in vivo support for the role of myocilin as a Wnt signalling pathway modulator. In summary, this myoc KO zebrafish line can be useful to investigate the elusive function of this protein, and it provides evidence for the unexpected function of myocilin as a key factor in zebrafish sex determination.

6.
Genes (Basel) ; 11(5)2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422965

RESUMO

Primary congenital glaucoma (PCG) is a heterogeneous, inherited, and severe optical neuropathy caused by apoptotic degeneration of the retinal ganglion cell layer. Whole-exome sequencing analysis of one PCG family identified two affected siblings who carried a low-frequency homozygous nonsense GUCA1C variant (c.52G > T/p.Glu18Ter/rs143174402). This gene encodes GCAP3, a member of the guanylate cyclase activating protein family, involved in phototransduction and with a potential role in intraocular pressure regulation. Segregation analysis supported the notion that the variant was coinherited with the disease in an autosomal recessive fashion. GCAP3 was detected immunohistochemically in the adult human ocular ciliary epithelium and retina. To evaluate the ocular effect of GUCA1C loss-of-function, a guca1c knockout zebrafish line was generated by CRISPR/Cas9 genome editing. Immunohistochemistry demonstrated the presence of GCAP3 in the non-pigmented ciliary epithelium and retina of adult wild-type fishes. Knockout animals presented up-regulation of the glial fibrillary acidic protein in Müller cells and evidence of retinal ganglion cell apoptosis, indicating the existence of gliosis and glaucoma-like retinal damage. In summary, our data provide evidence for the role of GUCA1C as a candidate gene in PCG and offer new insights into the function of this gene in the ocular anterior segment and the retina.


Assuntos
Glaucoma/genética , Proteínas Ativadoras de Guanilato Ciclase/fisiologia , Retina/metabolismo , Proteínas de Peixe-Zebra/fisiologia , Adulto , Sequência de Aminoácidos , Animais , Apoptose , Sequência de Bases , Sistemas CRISPR-Cas , Feminino , Edição de Genes , Técnicas de Inativação de Genes , Glaucoma/congênito , Gliose/genética , Gliose/patologia , Proteínas Ativadoras de Guanilato Ciclase/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Retina/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
7.
Hum Genet ; 139(10): 1209-1231, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32274568

RESUMO

Abnormal development of the ocular anterior segment may lead to a spectrum of clinical phenotypes ranging from primary congenital glaucoma (PCG) to variable anterior segment dysgenesis (ASD). The main objective of this study was to identify the genetic alterations underlying recessive congenital glaucoma with ASD (CG-ASD). Next-generation DNA sequencing identified rare biallelic CPAMD8 variants in four patients with CG-ASD and in one case with PCG. CPAMD8 is a gene of unknown function and recently associated with ASD. Bioinformatic and in vitro functional evaluation of the variants using quantitative reverse transcription PCR and minigene analysis supported a loss-of-function pathogenic mechanism. Optical and electron microscopy of the trabeculectomy specimen from one of the CG-ASD cases revealed an abnormal anterior chamber angle, with altered extracellular matrix, and apoptotic trabecular meshwork cells. The CPAMD8 protein was immunodetected in adult human ocular fluids and anterior segment tissues involved in glaucoma and ASD (i.e., aqueous humor, non-pigmented ciliary epithelium, and iris muscles), as well as in periocular mesenchyme-like cells of zebrafish embryos. CRISPR/Cas9 disruption of this gene in F0 zebrafish embryos (96 hpf) resulted in varying degrees of gross developmental abnormalities, including microphthalmia, pharyngeal maldevelopment, and pericardial and periocular edemas. Optical and electron microscopy examination of these embryos showed iridocorneal angle hypoplasia (characterized by altered iris stroma cells, reduced anterior chamber, and collagen disorganized corneal stroma extracellular matrix), recapitulating some patients' features. Our data support the notion that CPAMD8 loss-of-function underlies a spectrum of recessive CG-ASD phenotypes associated with extracellular matrix disorganization and provide new insights into the normal and disease roles of this gene.


Assuntos
Complemento C3/genética , Matriz Extracelular/metabolismo , Anormalidades do Olho/genética , Glaucoma/genética , Mutação com Perda de Função , Inibidor da Tripsina Pancreática de Kazal/genética , alfa-Macroglobulinas/genética , Adulto , Animais , Câmara Anterior/metabolismo , Câmara Anterior/patologia , Câmara Anterior/cirurgia , Sistemas CRISPR-Cas , Estudos de Casos e Controles , Complemento C3/deficiência , Embrião não Mamífero , Matriz Extracelular/patologia , Anormalidades do Olho/metabolismo , Anormalidades do Olho/patologia , Anormalidades do Olho/cirurgia , Feminino , Edição de Genes , Expressão Gênica , Genes Recessivos , Glaucoma/metabolismo , Glaucoma/patologia , Glaucoma/cirurgia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Malha Trabecular/metabolismo , Malha Trabecular/patologia , Malha Trabecular/cirurgia , Trabeculectomia , Inibidor da Tripsina Pancreática de Kazal/deficiência , Peixe-Zebra , alfa-Macroglobulinas/deficiência
8.
Sci Rep ; 7: 46175, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28397860

RESUMO

Congenital glaucoma (CG) is a heterogeneous, inherited and severe optical neuropathy that originates from maldevelopment of the anterior segment of the eye. To identify new disease genes, we performed whole-exome sequencing of 26 unrelated CG patients. In one patient we identified two rare, recessive and hypermorphic coding variants in GPATCH3, a gene of unidentified function, and 5% of a second group of 170 unrelated CG patients carried rare variants in this gene. The recombinant GPATCH3 protein activated in vitro the proximal promoter of CXCR4, a gene involved in embryo neural crest cell migration. The GPATCH3 protein was detected in human tissues relevant to glaucoma (e.g., ciliary body). This gene was expressed in the dermis, skeletal muscles, periocular mesenchymal-like cells and corneal endothelium of early zebrafish embryos. Morpholino-mediated knockdown and transient overexpression of gpatch3 led to varying degrees of goniodysgenesis and ocular and craniofacial abnormalities, recapitulating some of the features of zebrafish embryos deficient in the glaucoma-related genes pitx2 and foxc1. In conclusion, our data suggest the existence of high genetic heterogeneity in CG and provide evidence for the role of GPATCH3 in this disease. We also show that GPATCH3 is a new gene involved in ocular and craniofacial development.


Assuntos
Proteínas de Transporte/genética , Sequenciamento do Exoma , Olho/embriologia , Face/embriologia , Glaucoma/congênito , Glaucoma/genética , Mutação/genética , Crânio/embriologia , Animais , Segregação de Cromossomos/genética , Embrião não Mamífero/metabolismo , Família , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Especificidade de Órgãos/genética , Linhagem , Fenótipo , Regiões Promotoras Genéticas/genética , Receptores CXCR4/genética , Frações Subcelulares/metabolismo , Ativação Transcricional/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética
9.
Acta Ophthalmol ; 94(7): e555-e560, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27060699

RESUMO

PURPOSE: To evaluate the function of eight missense CYP1B1 single nucleotide variants (SNVs) previously identified in patients with primary congenital glaucoma (PCG). METHODS: The eight variants were obtained by site-directed mutagenesis and transiently expressed in human embryonic kidney 293-T (HEK-293T) cells. The catalytic activity, protein stability and subcellular localization of the different recombinant CYP1B1 variants were assessed in this cell line. RESULTS: Six of the mutant CYP1B1 proteins (p.L89P, p.A106D, p.R390S, p.P437L, p.C470Y and S485F) showed catalytic activity values ranging from 0% to 4% of those of the wild-type protein and were considered null variants. The activity values of the two remaining variants (p.F123L and p.A237E) were close to 20% of that of the wild-type enzyme and were classified as hypomorphic variants. Reduced protein stability contributed partially to the decreased catalytic activity of two of the mutant enzymes (p.L89P and p.A106D). None of the CYP1B1 variants showed intracellular aggregation and they all displayed a normal subcellular localization in the endoplasmic reticulum, suggesting that they had folded into a wild-type-like structure. The enzymatic activity associated with the different genotypes in which these CYP1B1 variants were present was estimated to range from 0% to 10% of that of the wild-type genotype. CONCLUSION: These results confirm the pathogenicity of the analysed missense CYP1B1 variants and further support the concept that either absent or very low CYP1B1 activity levels are the primary molecular defect involved in PCG pathogenesis.


Assuntos
Citocromo P-450 CYP1B1/genética , Hidroftalmia/genética , Mutação de Sentido Incorreto/genética , Polimorfismo de Nucleotídeo Único , Western Blotting , Citocromo P-450 CYP1B1/metabolismo , Primers do DNA/química , Eletroforese em Gel de Poliacrilamida , Técnica Indireta de Fluorescência para Anticorpo , Regulação Enzimológica da Expressão Gênica/fisiologia , Genótipo , Células HEK293 , Humanos , Lactente , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...