Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 7(8): 2333-2349, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39144557

RESUMO

Bitopic ligands bind both orthosteric and allosteric or secondary binding sites within the same receptor, often resulting in an improvement of receptor selectivity, potency, and efficacy. In particular, for both agonists and antagonists of the dopamine D2 and D3 receptors (D2R and D3R), the primary therapeutic targets for several neurological and neuropsychiatric disorders, bitopic ligand design has proved advantageous in achieving better pharmacological profiles in vitro. Although the two pharmacophores within a bitopic ligand are typically considered the main drivers of conformational change for a receptor, the role of the linker that connects the two has not yet been systematically studied for its relevance in receptor activity profiles. Here, we present a comprehensive analysis of sumanirole and PF592,379-based indole-containing bitopic compounds in agonist activity at D2R and D3R, with a focus on linker chemical space and stereochemistry through testing six distinct chirally resolved linkers and a simple aliphatic linker. The structure activity relationships (SARs) of these linkers are examined extensively, beyond the conventional level, by characterizing the activation of all putative transducers over a 44 min time course. Our multiparametric analysis reveals previously unappreciated specific linker-dependent effects on primary pharmacophores, receptors, transducer activation kinetics, and bias, highlighting the utility of this comprehensive approach and the significance of the linker type in shaping transducer bias profiles.

2.
Arch Pharm (Weinheim) ; : e2400337, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054609

RESUMO

A new series of muscarinic acetylcholine receptor (mAChR) ligands obtained by inserting different substituents in position 2 of the potent 6,6-diphenyl-1,4-dioxane antagonists 4 and 5 was designed and synthesized to investigate the influence of steric bulk on the mAChR affinity. Specifically, the insertion of a 2-methyl group, affording compounds 6 and 9, resulted as the most favorable modification in terms of affinity for all muscarinic subtypes. As supported by computational studies performed on the hM1 receptor, this substituent may contribute to stabilize the ligand within the binding site by favoring the formation of stable interactions between the cationic head of the ligand and the residue D105. The increase of steric bulk, obtained by replacing the methyl group with an ethyl (7 and 10) and especially a phenyl substituent (8 and 11), caused a marked decrease of mAChR affinity, demonstrating the crucial role played by the steric bulk of the 2-substituent in the mAChR interaction. The most intriguing result was obtained with the tertiary amine 9, which, surprisingly, showed two different pKi values for all mAChRs, with preferential subpicomolar affinities for the M1, M3, and M4 subtypes. Interestingly, biphasic curves were also observed with both the eutomer (S)-(-)-9 and the distomer (R)-( + )-9.

3.
Neuropharmacology ; 257: 110051, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38917939

RESUMO

Impulsive decision-making has been linked to impulse control disorders and substance use disorders. However, the neural mechanisms underlying impulsive choice are not fully understood. While previous PET imaging and autoradiography studies have shown involvement of dopamine and D2/3 receptors in impulsive behavior, the roles of distinct D1, D2, and D3 receptors in impulsive decision-making remain unclear. In this study, we used a food reward delay-discounting task (DDT) to identify low- and high-impulsive rats, in which low-impulsive rats exhibited preference for large delayed reward over small immediate rewards, while high-impulsive rats showed the opposite preference. We then examined D1, D2, and D3 receptor gene expression using RNAscope in situ hybridization assays. We found that high-impulsive male rats exhibited lower levels of D2 and D3, and particularly D3, receptor expression in the nucleus accumbens (NAc), with no significant changes in the insular, prelimbic, and infralimbic cortices. Based on these findings, we further explored the role of the D3 receptor in impulsive decision-making. Systemic administration of a selective D3 receptor agonist (FOB02-04) significantly reduced impulsive choices in high-impulsive rats but had no effects in low-impulsive rats. Conversely, a selective D3 receptor antagonist (VK4-116) produced increased both impulsive and omission choices in both groups of rats. These findings suggest that impulsive decision-making is associated with a reduction in D3 receptor expression in the NAc. Selective D3 receptor agonists, but not antagonists, may hold therapeutic potentials for mitigating impulsivity in high-impulsive subjects.


Assuntos
Comportamento de Escolha , Tomada de Decisões , Desvalorização pelo Atraso , Comportamento Impulsivo , Receptores de Dopamina D2 , Receptores de Dopamina D3 , Animais , Masculino , Receptores de Dopamina D3/metabolismo , Comportamento Impulsivo/efeitos dos fármacos , Comportamento Impulsivo/fisiologia , Ratos , Desvalorização pelo Atraso/efeitos dos fármacos , Desvalorização pelo Atraso/fisiologia , Receptores de Dopamina D2/metabolismo , Tomada de Decisões/efeitos dos fármacos , Tomada de Decisões/fisiologia , Comportamento de Escolha/efeitos dos fármacos , Comportamento de Escolha/fisiologia , Recompensa , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Antagonistas de Dopamina/farmacologia , Ratos Sprague-Dawley
4.
Diabetes ; 73(9): 1411-1425, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38869519

RESUMO

Dopamine (DA) D2-like receptors in both the central nervous system (CNS) and the periphery are key modulators of metabolism. Moreover, disruption of D2-like receptor signaling is implicated in dysglycemia. Yet, the respective metabolic contributions of CNS versus peripheral D2-like receptors, including D2 (D2R) and D3 (D3R) receptors, remain poorly understood. To address this, we developed new pharmacological tools, D2-like receptor agonists with diminished and delayed blood-brain barrier capability, to selectively manipulate D2R/D3R signaling in the periphery. We designated bromocriptine methiodide (BrMeI), a quaternary methiodide analog of D2R/D3R agonist and diabetes drug bromocriptine, as our lead compound based on preservation of D2R/D3R binding and functional efficacy. We then used BrMeI and unmodified bromocriptine to dissect relative contributions of CNS versus peripheral D2R/D3R signaling in treating dysglycemia. Systemic administration of bromocriptine, with unrestricted access to CNS and peripheral targets, significantly improved both insulin sensitivity and glucose tolerance in obese, dysglycemic mice in vivo. In contrast, metabolic improvements were attenuated when access to bromocriptine was restricted either to the CNS through intracerebroventricular administration or delayed access to the CNS via BrMeI. Our findings demonstrate that the coordinated actions of both CNS and peripheral D2-like receptors are required for correcting dysglycemia. Ultimately, the development of a first-generation of drugs designed to selectively target the periphery provides a blueprint for dissecting mechanisms of central versus peripheral DA signaling and paves the way for novel strategies to treat dysglycemia.


Assuntos
Bromocriptina , Agonistas de Dopamina , Receptores de Dopamina D2 , Transdução de Sinais , Animais , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/agonistas , Bromocriptina/farmacologia , Bromocriptina/uso terapêutico , Camundongos , Transdução de Sinais/efeitos dos fármacos , Masculino , Agonistas de Dopamina/farmacologia , Agonistas de Dopamina/uso terapêutico , Camundongos Endogâmicos C57BL , Resistência à Insulina/fisiologia , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Humanos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Receptores de Dopamina D3/metabolismo , Receptores de Dopamina D3/agonistas
5.
Med Res Rev ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808959

RESUMO

5-HT1A receptor (5-HT1A-R) is a serotoninergic G-protein coupled receptor subtype which contributes to several physiological processes in both central nervous system and periphery. Despite being the first 5-HT-R identified, cloned and studied, it still represents a very attractive target in drug discovery and continues to be the focus of a myriad of drug discovery campaigns due to its involvement in numerous neuropsychiatric disorders. The structure-activity relationship studies (SAR) performed over the last years have been devoted to three main goals: (i) design and synthesis of 5-HT1A-R selective/preferential ligands; (ii) identification of 5-HT1A-R biased agonists, differentiating pre- versus post-synaptic agonism and signaling cellular mechanisms; (iii) development of multitarget compounds endowed with well-defined poly-pharmacological profiles targeting 5-HT1A-R along with other serotonin receptors, serotonin transporter (SERT), D2-like receptors and/or enzymes, such as acetylcholinesterase and phosphodiesterase, as a promising strategy for the management of complex psychiatric and neurodegenerative disorders. In this review, medicinal chemistry aspects of ligands acting as selective/preferential or multitarget 5-HT1A-R agonists and antagonists belonging to different chemotypes and developed in the last 7 years (2017-2023) have been discussed. The development of chemical and pharmacological 5-HT1A-R tools for molecular imaging have also been described. Finally, the pharmacological interest of 5-HT1A-R and the therapeutic potential of ligands targeting this receptor have been considered.

6.
bioRxiv ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38529497

RESUMO

Dopamine (DA) D2-like receptors in both the central nervous system (CNS) and the periphery are key modulators of metabolism. Moreover, disruption of D2-like receptor signaling is implicated in dysglycemia. Yet, the respective metabolic contributions of CNS versus peripheral D2-like receptors including D2 (D2R) and D3 (D3R) receptors remain poorly understood. To address this, we developed new pharmacological tools, D2-like receptor agonists with diminished and delayed blood-brain barrier capability, to selectively manipulate D2R/D3R signaling in the periphery. We designated bromocriptine methiodide (BrMeI), a quaternary methiodide analogue of D2/3R agonist and diabetes drug bromocriptine, as our lead compound based on preservation of D2R/D3R binding and functional efficacy. We then used BrMeI and unmodified bromocriptine to dissect relative contributions of CNS versus peripheral D2R/D3R signaling in treating dysglycemia. Systemic administration of bromocriptine, with unrestricted access to CNS and peripheral targets, significantly improved both insulin sensitivity and glucose tolerance in obese, dysglycemic mice in vivo. In contrast, metabolic improvements were attenuated when access to bromocriptine was restricted either to the CNS through intracerebroventricular administration or delayed access to the CNS via BrMeI. Our findings demonstrate that the coordinated actions of both CNS and peripheral D2-like receptors are required for correcting dysglycemia. Ultimately, the development of a first-generation of drugs designed to selectively target the periphery provides a blueprint for dissecting mechanisms of central versus peripheral DA signaling and paves the way for novel strategies to treat dysglycemia.

7.
J Med Chem ; 66(17): 12141-12162, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37646374

RESUMO

Pharmacological targeting of the dopamine D4 receptor (D4R)─expressed in brain regions that control cognition, attention, and decision-making─could be useful for several neuropsychiatric disorders including substance use disorders (SUDs). This study focused on the synthesis and evaluation of a novel series of benzothiazole analogues designed to target D4R. We identified several compounds with high D4R binding affinity (Ki ≤ 6.9 nM) and >91-fold selectivity over other D2-like receptors (D2R, D3R) with diverse partial agonist and antagonist profiles. Novel analogue 16f is a potent low-efficacy D4R partial agonist, metabolically stable in rat and human liver microsomes, and has excellent brain penetration in rats (AUCbrain/plasma > 3). 16f (5-30 mg/kg, i.p.) dose-dependently decreased iv cocaine self-administration in rats, consistent with previous results produced by D4R-selective antagonists. Off-target antagonism of 5-HT2A or 5-HT2B may also contribute to these effects. Results with 16f support further efforts to target D4R in SUD treatment.


Assuntos
Cocaína , Transtornos Relacionados ao Uso de Substâncias , Humanos , Animais , Ratos , Serotonina , Benzotiazóis/farmacologia , Benzotiazóis/uso terapêutico , Encéfalo , Cocaína/farmacologia
8.
J Med Chem ; 66(15): 10304-10341, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37467430

RESUMO

A new generation of dual-target µ opioid receptor (MOR) agonist/dopamine D3 receptor (D3R) antagonist/partial agonists with optimized physicochemical properties was designed and synthesized. Combining in vitro cell-based on-target/off-target affinity screening, in silico computer-aided drug design, and BRET functional assays, we identified new structural scaffolds that achieved high affinity and agonist/antagonist potencies for MOR and D3R, respectively, improving the dopamine receptor subtype selectivity (e.g., D3R over D2R) and significantly enhancing central nervous system multiparameter optimization scores for predicted blood-brain barrier permeability. We identified the substituted trans-(2S,4R)-pyrrolidine and trans-phenylcyclopropyl amine as key dopaminergic moieties and tethered these to different opioid scaffolds, derived from the MOR agonists TRV130 (3) or loperamide (6). The lead compounds 46, 84, 114, and 121 have the potential of producing analgesic effects through MOR partial agonism with reduced opioid-misuse liability via D3R antagonism. Moreover, the peripherally limited derivatives could have therapeutic indications for inflammation and neuropathic pain.


Assuntos
Analgésicos Opioides , Transtornos Relacionados ao Uso de Opioides , Humanos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/química , Dopamina , Ligantes , Analgésicos/farmacologia , Receptores de Dopamina D3/agonistas , Receptores Opioides mu/agonistas
9.
Pharmacol Res ; 195: 106875, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517560

RESUMO

Neuromedin U (NMU) is a bioactive peptide produced in the gut and in the brain, with a role in multiple physiological processes. NMU acts by binding and activating two G protein coupled receptors (GPCR), the NMU receptor 1 (NMU-R1), which is predominantly expressed in the periphery, and the NMU receptor 2 (NMU-R2), mainly expressed in the central nervous system (CNS). In the brain, NMU and NMU-R2 are consistently present in the hypothalamus, commonly recognized as the main "feeding center". Considering its distribution pattern, NMU revealed to be an important neuropeptide involved in the regulation of food intake, with a powerful anorexigenic ability. This has been observed through direct administration of NMU and by studies using genetically modified animals, which revealed an obesity phenotype when the NMU gene is deleted. Thus, the development of NMU analogs or NMU-R2 agonists might represent a promising pharmacological strategy to treat obese individuals. Furthermore, NMU has been demonstrated to influence the non-homeostatic aspect of food intake, playing a potential role in binge eating behavior. This review aims to discuss and summarize the current literature linking the NMU system with obesity and binge eating behavior, focusing on the influence of NMU on food intake and the neuronal mechanisms underlying its anti-obesity properties. Pharmacological strategies to improve the pharmacokinetic profile of NMU will also be reported.


Assuntos
Bulimia , Neuropeptídeos , Hormônios Peptídicos , Animais , Comportamento Alimentar , Neuropeptídeos/uso terapêutico , Obesidade/tratamento farmacológico , Bulimia/tratamento farmacológico
10.
Med Res Rev ; 43(5): 1607-1667, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37036052

RESUMO

Orexin-A and orexin-B, also named hypocretin-1 and hypocretin-2, are two hypothalamic neuropeptides highly conserved across mammalian species. Their effects are mediated by two distinct G protein-coupled receptors, namely orexin receptor type 1 (OX1-R) and type 2 (OX2-R), which share 64% amino acid identity. Given the wide expression of OX-Rs in different central nervous system and peripheral areas and the several pathophysiological functions in which they are involved, including sleep-wake cycle regulation (mainly mediated by OX2-R), emotion, panic-like behaviors, anxiety/stress, food intake, and energy homeostasis (mainly mediated by OX1-R), both subtypes represent targets of interest for many structure-activity relationship (SAR) campaigns carried out by pharmaceutical companies and academies. However, before 2017 the research was predominantly directed towards dual-orexin ligands, and limited chemotypes were investigated. Analytical characterizations, including resolved structures for both OX1-R and OX2-R in complex with agonists and antagonists, have improved the understanding of the molecular basis of receptor recognition and are assets for medicinal chemists in the design of subtype-selective ligands. This review is focused on the medicinal chemistry aspects of small molecules acting as dual or subtype selective OX1-R/OX2-R agonists and antagonists belonging to different chemotypes and developed in the last years, including radiolabeled OX-R ligands for molecular imaging. Moreover, the pharmacological effects of the most studied ligands in different neuropsychiatric diseases, such as sleep, mood, substance use, and eating disorders, as well as pain, have been discussed. Poly-pharmacology applications and multitarget ligands have also been considered.


Assuntos
Neuropeptídeos , Humanos , Animais , Receptores de Orexina/metabolismo , Ligantes , Orexinas , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Receptores Acoplados a Proteínas G , Sistema Nervoso Central , Receptores de Neuropeptídeos/metabolismo , Mamíferos/metabolismo
11.
J Med Chem ; 66(3): 1809-1834, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36661568

RESUMO

Highly selective dopamine D3 receptor (D3R) partial agonists/antagonists have been developed for the treatment of psychostimulant use disorders (PSUD). However, none have reached the clinic due to insufficient potency/efficacy or potential cardiotoxicity. Cariprazine, an FDA-approved drug for the treatment of schizophrenia and bipolar disorder, is a high-affinity D3R partial agonist (Ki = 0.22 nM) with 3.6-fold selectivity over the homologous dopamine D2 receptor (D2R). We hypothesized that compounds that are moderately D3R/D2R-selective partial agonists/antagonists may be effective for the treatment of PSUD. By systematically modifying the parent molecule, we discovered partial agonists/antagonists, as measured in bioluminescence resonance energy transfer (BRET)-based assays, with high D3R affinities (Ki = 0.14-50 nM) and moderate selectivity (<100-fold) over D2R. Cariprazine and two lead analogues, 13a and 13e, decreased cocaine self-administration (FR2; 1-10 mg/kg, i.p.) in rats, suggesting that partial agonists/antagonists with modest D3R/D2R selectivity may be effective in treating PSUD and potentially comorbidities with other affective disorders.


Assuntos
Estimulantes do Sistema Nervoso Central , Dopamina , Ratos , Animais , Receptores de Dopamina D3 , Ligantes , Agonistas de Dopamina
12.
Res Sq ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38196573

RESUMO

Although aminergic GPCRs are the target for ~25% of approved drugs, developing subtype selective drugs is a major challenge due to the high sequence conservation at their orthosteric binding site. Bitopic ligands are covalently joined orthosteric and allosteric pharmacophores with the potential to boost receptor selectivity, driven by the binding of the secondary pharmacophore to non-conserved regions of the receptor. Although bitopic ligands have great potential to improve current medications by reducing off-target side effects, the lack of structural information on their binding mode impedes rational design. Here we determine the cryo-EM structure of the hD3R coupled to a GO heterotrimer and bound to the D3R selective bitopic agonist FOB02-04A. Structural, functional and computational analyses provide new insights into its binding mode and point to a new TM2-ECL1-TM1 region, which requires the N-terminal ordering of TM1, as a major determinant of subtype selectivity in aminergic GPCRs. This region is underexploited in drug development, expands the established secondary binding pocket in aminergic GPCRs and could potentially be used to design novel and subtype selective drugs.

13.
Pharmacol Res ; 185: 106476, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36182040

RESUMO

A main rationale for the role of G protein-coupled receptor (GPCR) heteromers as targets for drug development is the putative ability of selective ligands for specific GPCRs to change their pharmacological properties upon GPCR heteromerization. The present study provides a proof of concept for this rationale by demonstrating that heteromerization of dopamine D1 and D3 receptors (D1R and D3R) influences the pharmacological properties of three structurally similar selective dopamine D3R ligands, the phenylpiperazine derivatives PG01042, PG01037 and VK4-116. By using D1R-D3R heteromer-disrupting peptides, it could be demonstrated that the three D3R ligands display different D1R-D3R heteromer-dependent pharmacological properties: PG01042, acting as G protein-biased agonist, counteracted D1R-mediated signaling in the D1R-D3R heteromer; PG01037, acting as a D3R antagonist cross-antagonized D1R-mediated signaling in the D1R-D3R heteromer; and VK4-116 specifically acted as a ß-arrestin-biased agonist in the D1R-D3R heteromer. Molecular dynamics simulations predicted potential molecular mechanisms mediating these qualitatively different pharmacological properties of the selective D3R ligands that are dependent on D1R-D3R heteromerization. The results of in vitro experiments were paralleled by qualitatively different pharmacological properties of the D3R ligands in vivo. The results supported the involvement of D1R-D3R heteromers in the locomotor activation by D1R agonists in reserpinized mice and L-DOPA-induced dyskinesia in rats, highlighting the D1R-D3R heteromer as a main pharmacological target for L-DOPA-induced dyskinesia in Parkinson's disease. More generally, the present study implies that when suspecting its pathogenetic role, a GPCR heteromer, and not its individual GPCR units, should be considered as main target for drug development.


Assuntos
Discinesias , Levodopa , Animais , Ratos , Camundongos , Receptores de Dopamina D3/agonistas , Receptores de Dopamina D1/agonistas , Dopamina , Receptores Acoplados a Proteínas G , Ligantes
14.
J Med Chem ; 65(18): 12124-12139, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36098685

RESUMO

To better understand the role of dopamine D4 receptor (D4R) in glioblastoma (GBM), in the present paper, new ligands endowed with high affinity and selectivity for D4R were discovered starting from the brain penetrant and D4R selective lead compound 1-(3-(4-phenylpiperazin-1-yl)propyl)-3,4-dihydroquinolin-2(1H)-one (6). In particular, the D4R antagonist 24, showing the highest affinity and selectivity over D2R and D3R within the series (D2/D4 = 8318, D3/D4 = 3715), and the biased ligand 29, partially activating D4R Gi-/Go-protein and blocking ß-arrestin recruitment, emerged as the most interesting compounds. These compounds, evaluated for their GBM antitumor activity, induced a decreased viability of GBM cell lines and primary GBM stem cells (GSC#83), with the maximal efficacy being reached at a concentration of 10 µM. Interestingly, the treatment with both compounds 24 and 29 induced an increased effect in reducing the cell viability with respect to temozolomide, which is the first-choice chemotherapeutic drug in GBM.


Assuntos
Antagonistas de Dopamina , Glioblastoma , Receptores de Dopamina D4 , Antagonistas de Dopamina/farmacologia , Antagonistas de Dopamina/uso terapêutico , Glioblastoma/tratamento farmacológico , Humanos , Ligantes , Temozolomida , beta-Arrestinas/metabolismo
15.
Pharmacol Res ; 182: 106322, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35750299

RESUMO

Recent studies have proposed that heteromers of µ-opioid receptors (MORs) and galanin Gal1 receptors (Gal1Rs) localized in the mesencephalon mediate the dopaminergic effects of opioids. The present study reports converging evidence, using a peptide-interfering approach combined with biophysical and biochemical techniques, including total internal reflection fluorescence microscopy, for a predominant homodimeric structure of MOR and Gal1R when expressed individually, and for their preference to form functional heterotetramers when co-expressed. Results show that a heteromerization-dependent change in the Gal1R homodimeric interface leads to a switch in G-protein coupling from inhibitory Gi to stimulatory Gs proteins. The MOR-Gal1R heterotetramer, which is thus bound to Gs via the Gal1R homodimer and Gi via the MOR homodimer, provides the framework for a canonical Gs-Gi antagonist interaction at the adenylyl cyclase level. These novel results shed light on the intense debate about the oligomeric quaternary structure of G protein-coupled receptors, their predilection for heteromer formation, and the resulting functional significance.


Assuntos
Analgésicos Opioides , Galanina , Analgésicos Opioides/farmacologia , Mesencéfalo , Peptídeos , Receptores Opioides
16.
J Med Chem ; 64(20): 15313-15333, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34636551

RESUMO

The crystal structure of the dopamine D3 receptor (D3R) in complex with eticlopride inspired the design of bitopic ligands that explored (1) N-alkylation of the eticlopride's pyrrolidine ring, (2) shifting of the position of the pyrrolidine nitrogen, (3) expansion of the pyrrolidine ring system, and (4) incorporation of O-alkylations at the 4-position. Structure activity relationships (SAR) revealed that moving the N- or expanding the pyrrolidine ring was detrimental to D2R/D3R binding affinities. Small pyrrolidine N-alkyl groups were poorly tolerated, but the addition of a linker and secondary pharmacophore (SP) improved affinities. Moreover, O-alkylated analogues showed higher binding affinities compared to analogously N-alkylated compounds, e.g., O-alkylated 33 (D3R, 0.436 nM and D2R, 1.77 nM) vs the N-alkylated 11 (D3R, 6.97 nM and D2R, 25.3 nM). All lead molecules were functional D2R/D3R antagonists. Molecular models confirmed that 4-position modifications would be well-tolerated for future D2R/D3R bioconjugate tools that require long linkers and or sterically bulky groups.


Assuntos
Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Salicilamidas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Salicilamidas/síntese química , Salicilamidas/química , Relação Estrutura-Atividade
17.
J Med Chem ; 64(21): 16088-16105, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34699207

RESUMO

Linkers are emerging as a key component in regulating the pharmacology of bitopic ligands directed toward G-protein coupled receptors (GPCRs). In this study, the role of regio- and stereochemistry in cyclic aliphatic linkers tethering well-characterized primary and secondary pharmacophores targeting dopamine D2 and D3 receptor subtypes (D2R and D3R, respectively) is described. We introduce several potent and selective D2R (rel-trans-16b; D2R Ki = 4.58 nM) and D3R (rel-cis-14a; D3R Ki = 5.72 nM) agonists while modulating subtype selectivity in a stereospecific fashion, transferring D2R selectivity toward D3R via inversion of the stereochemistry around these cyclic aliphatic linkers [e.g., (-)-(1S,2R)-43 and (+)-(1R,2S)-42]. Pharmacological observations were supported with extensive molecular docking studies. Thus, not only is it an innovative approach to modulate the pharmacology of dopaminergic ligands described, but a new class of optically active cyclic linkers are also introduced, which can be used to expand the bitopic drug design approach toward other GPCRs.


Assuntos
Agonistas de Dopamina/farmacologia , Receptores de Dopamina D2/efeitos dos fármacos , Receptores de Dopamina D3/efeitos dos fármacos , Agonistas de Dopamina/química , Células HEK293 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ensaio Radioligante , Estereoisomerismo
18.
ACS Chem Neurosci ; 12(19): 3638-3649, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34529404

RESUMO

In the search for novel bitopic compounds targeting the dopamine D3 receptor (D3R), the N-(2,3-dichlorophenyl)piperazine nucleus (primary pharmacophore) has been linked to the 6,6- or 5,5-diphenyl-1,4-dioxane-2-carboxamide or the 1,4-benzodioxane-2-carboxamide scaffold (secondary pharmacophore) by an unsubstituted or 3-F-/3-OH-substituted butyl chain. This scaffold hybridization strategy led to the discovery of potent D3R-selective or multitarget ligands potentially useful for central nervous system disorders. In particular, the 6,6-diphenyl-1,4-dioxane derivative 3 showed a D3R-preferential profile, while an interesting multitarget behavior has been highlighted for the 5,5-diphenyl-1,4-dioxane and 1,4-benzodioxane derivatives 6 and 9, respectively, which displayed potent D2R antagonism, 5-HT1AR and D4R agonism, as well as potent D3R partial agonism. They also behaved as low-potency 5-HT2AR antagonists and 5-HT2CR partial agonists. Such a profile might be a promising starting point for the discovery of novel antipsychotic agents.


Assuntos
Antipsicóticos , Doenças do Sistema Nervoso Central , Doenças do Sistema Nervoso Central/tratamento farmacológico , Dopamina , Humanos , Ligantes
19.
J Med Chem ; 64(11): 7778-7808, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34011153

RESUMO

The need for safer pain-management therapies with decreased abuse liability inspired a novel drug design that retains µ-opioid receptor (MOR)-mediated analgesia, while minimizing addictive liability. We recently demonstrated that targeting the dopamine D3 receptor (D3R) with highly selective antagonists/partial agonists can reduce opioid self-administration and reinstatement to drug seeking in rodent models without diminishing antinociceptive effects. The identification of the D3R as a target for the treatment of opioid use disorders prompted the idea of generating a class of ligands presenting bitopic or bivalent structures, allowing the dual-target binding of the MOR and D3R. Structure-activity relationship studies using computationally aided drug design and in vitro binding assays led to the identification of potent dual-target leads (23, 28, and 40), based on different structural templates and scaffolds, with moderate (sub-micromolar) to high (low nanomolar/sub-nanomolar) binding affinities. Bioluminescence resonance energy transfer-based functional studies revealed MOR agonist-D3R antagonist/partial agonist efficacies that suggest potential for maintaining analgesia with reduced opioid-abuse liability.


Assuntos
Antagonistas de Dopamina/química , Ligantes , Receptores de Dopamina D3/metabolismo , Receptores Opioides mu/metabolismo , Analgésicos Opioides/uso terapêutico , Animais , Sítios de Ligação , Compostos de Bifenilo/química , Compostos de Bifenilo/metabolismo , Compostos de Bifenilo/uso terapêutico , Modelos Animais de Doenças , Antagonistas de Dopamina/metabolismo , Antagonistas de Dopamina/uso terapêutico , Desenho de Fármacos , Transferência Ressonante de Energia de Fluorescência , Camundongos , Simulação de Acoplamento Molecular , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Dor/tratamento farmacológico , Manejo da Dor , Receptores de Dopamina D3/agonistas , Receptores de Dopamina D3/antagonistas & inibidores , Receptores Opioides mu/agonistas , Relação Estrutura-Atividade
20.
Biomolecules ; 11(4)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924613

RESUMO

The dopamine D2/D3 receptor (D2R/D3R) agonists are used as therapeutics for Parkinson's disease (PD) and other motor disorders. Selective targeting of D3R over D2R is attractive because of D3R's restricted tissue distribution with potentially fewer side-effects and its putative neuroprotective effect. However, the high sequence homology between the D2R and D3R poses a challenge in the development of D3R selective agonists. To address the ligand selectivity, bitopic ligands were designed and synthesized previously based on a potent D3R-preferential agonist PF592,379 as the primary pharmacophore (PP). This PP was attached to various secondary pharmacophores (SPs) using chemically different linkers. Here, we characterize some of these novel bitopic ligands at both D3R and D2R using BRET-based functional assays. The bitopic ligands showed varying differences in potencies and efficacies. In addition, the chirality of the PP was key to conferring improved D3R potency, selectivity, and G protein signaling bias. In particular, compound AB04-88 exhibited significant D3R over D2R selectivity, and G protein bias at D3R. This bias was consistently observed at various time-points ranging from 8 to 46 min. Together, the structure-activity relationships derived from these functional studies reveal unique pharmacology at D3R and support further evaluation of functionally biased D3R agonists for their therapeutic potential.


Assuntos
Agonistas de Dopamina/farmacologia , Receptores de Dopamina D3/metabolismo , Aminopiridinas/química , Aminopiridinas/farmacologia , Sítios de Ligação , Agonistas de Dopamina/síntese química , Transferência de Energia , Células HEK293 , Humanos , Luminescência , Morfolinas/química , Morfolinas/farmacologia , Ligação Proteica , Receptores de Dopamina D2/química , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/química , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...