Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(8)2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37627321

RESUMO

Xenon (Xe) has shown great potential as a stroke treatment due to its exceptional ability to protect brain tissue without inducing side effects. We have previously developed Xe-loaded liposomes for the ultrasound-activated delivery of Xe into the cerebral region and demonstrated their therapeutic efficacy. At present, the sole FDA-approved thrombolytic agent for stroke treatment is recombinant tissue plasminogen activator (rtPA). In this study, we aimed to investigate the potential of combining Xe-liposomes with an intravenous rtPA treatment in a clinically relevant embolic rat stroke model. We evaluated the combinational effect using an in vitro clot lysis model and an in vivo embolic middle cerebral artery occlusion (eMCAO) rat model. The treatment groups received intravenous administration of Xe-liposomes (20 mg/kg) at 2 h post-stroke onset, followed by the administration of rtPA (10 mg/kg) at either 2 or 4 h after the onset. Three days after the stroke, behavioral tests were conducted, and brain sections were collected for triphenyltetrazolium chloride (TTC) and TUNEL staining. Infarct size was determined as normalized infarct volume (%). Both in vitro and in vivo clot lysis experiments demonstrated that Xe-liposomes in combination with rtPA resulted in effective clot lysis comparable to the treatment with free rtPA alone. Animals treated with Xe-liposomes in combination with rtPA showed reduced TUNEL-positive cells and demonstrated improved neurological recovery. Importantly, Xe-liposomes in combination with late rtPA treatment reduced rtPA-induced hemorrhage, attributing to the reduction of MMP9 immunoreactivity. This study demonstrates that the combined therapy of Xe-liposomes and rtPA provides enhanced therapeutic efficacy, leading to decreased neuronal cell death and a potential to mitigate hemorrhagic side effects associated with late rtPA treatment.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Ratos , Ativador de Plasminogênio Tecidual/farmacologia , Ativador de Plasminogênio Tecidual/uso terapêutico , Lipossomos , Acidente Vascular Cerebral/tratamento farmacológico , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Infarto , Terapia Trombolítica
2.
Forensic Genom ; 1(3): 83-86, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34806083

RESUMO

Background: Genetic testing at crime scenes is an instrumental molecular technique to identify or eliminate suspects, as well as to overturn wrongful convictions. Yet, genotyping alone cannot reveal the age of a sample, which could help advance the utility of crime scene samples for suspect identification. The distribution of cytosine methylation within a DNA sample can be leveraged to determine the epigenetic age of someone's blood. Methodology: We sought to demonstrate the ability of DNA methylation markers to accurately discern the age of blood spots from an actual crime scene, a "mock" crime scene, and also from a tube of blood stored in ethylenediaminetetraacetic acid for >20 years. This was achieved by quantifying methylation within known age-associated genetic loci across each DNA sample. We observed a strong linear coefficient (0.91) and high overall correlation (R 2 = 0.963) between the known age of a sample and the predicted age. Conclusion: We show that novel methods for targeted methylation and low-input whole-genome bisulfite sequencing can enable a novel and improved forensic profile of a crime scene that discerns not only who was present at the crime, but also their age. Finally, we use this model to discern the age and provenance of a blood sample that was used in a criminal investigation.

3.
Fertil Steril ; 110(3): 419-428.e1, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29961538

RESUMO

OBJECTIVE: To evaluate the epigenetic consequence on the methylome and subsequent transcriptome in euploid blastocysts of male-factor (MF) infertility patients. DESIGN: Methylome and transcriptome analysis on individual oligoasthenoteratozoospermia (OAT [MF]) blastocysts. SETTING: Infertility clinic. PATIENT(S): Clinical data from 128 couples presenting with OAT (MF) and 118 maternal age-matched control (no MF) subjects undergoing infertility treatment from 2010 to 2014, along with 72 surplus cryopreserved blastocysts donated from 33 couples with their informed consents. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Methyl Maxi-Seq (Zymo Research) was used to determine genome-wide DNA methylation, and small cell number RNA-Seq was used to examine the global transcriptome. Validation experiments were performed with the use of pyrosequencing or quantitative real-time polymerase chain reaction. Statistical analysis used Student t test, analysis of variance in R, Fisher exact test, and pairwise fixed reallocation randomization test where appropriate, with significance at P<.05. RESULT(S): Clinical pregnancy rates were similar between OAT (MF) patients and control (no MF) subjects after euploid embryo transfer. However, the miscarriage rate for OAT (MF) patients was significantly higher (14.7% vs. 2.2%; P<.05). Methylome and transcriptome analyses of individual blastocysts revealed significant alterations in 1,111 CpG sites and 469 transcripts, respectively (P<.05). Pathway analysis elucidated genes involved in "regulation of cellular metabolic process" as universally affected. Validation of the genome-wide approaches was performed for SBF1 and SLC6A9 (P<.05). CONCLUSION(S): Methylation and transcription aberrations in individual OAT (MF) blastocysts illustrate an epigenetic consequence of MF infertility on embryogenesis, significantly altering key developmental genes and affecting embryonic competence. This epigenetic dysregulation provides an explanation for the reduced reproductive potential in OAT (MF) patients despite euploid blastocyst transfers.


Assuntos
Transferência Embrionária/métodos , Epigênese Genética/genética , Fertilização in vitro/métodos , Infertilidade Masculina/genética , Oligospermia/genética , Reprodução/genética , Adulto , Transferência Embrionária/tendências , Feminino , Fertilização in vitro/tendências , Humanos , Masculino , Oligospermia/diagnóstico , Oligospermia/terapia , Gravidez , Taxa de Gravidez/tendências
4.
BMC Genomics ; 18(1): 966, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29237414

RESUMO

BACKGROUND: Cytosine methylation is a stable epigenetic modification of DNA that plays an important role in both normal physiology and disease. Most diseases exhibit some degree of sexual dimorphism, but the extent to which epigenetic states are influenced by sex is understudied and poorly understood. To address this deficit we studied DNA methylation patterns across multiple reduced representation bisulphite sequencing datasets (from liver, heart, brain, muscle and spleen) derived from isogenic male and female mice. RESULTS: DNA methylation patterns varied significantly from tissue to tissue, as expected, but they also varied between the sexes, with thousands of sexually dimorphic loci identified. The loci affected were largely autonomous to each tissue, even within tissues derived from the same germ layer. At most loci, differences between genders were driven by females exhibiting hypermethylation relative to males; a proportion of these differences were independent of the presence of testosterone in males. Loci harbouring gender differences were clustered in ontologies related to tissue function. CONCLUSIONS: Our findings suggest that gender is underwritten in the epigenome in a tissue-specific and potentially sex hormone-independent manner. Gender-specific epigenetic states are likely to have important implications for understanding sexually dimorphic phenotypes in health and disease.


Assuntos
Metilação de DNA , Caracteres Sexuais , Animais , Animais Congênicos , Encéfalo/metabolismo , Feminino , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Especificidade de Órgãos , Testosterona/fisiologia
5.
Cell Cycle ; 11(23): 4414-23, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23159852

RESUMO

Methionine and homocysteine are metabolites in the transmethylation pathway leading to synthesis of the methyl-donor S-adenosylmethionine (SAM). Most cancer cells stop proliferating during methionine stress conditions, when methionine is replaced in the growth media by its immediate metabolic precursor homocysteine (Met-Hcy+). Non-transformed cells proliferate in Met-Hcy+ media, making the methionine metabolic requirement of cancer cells an attractive target for therapy, yet there is relatively little known about the molecular mechanisms governing the methionine stress response in cancer cells. To study this phenomenon in breast cancer cells, we selected methionine-independent-resistant cell lines derived from MDAMB468 breast cancer cells. Resistant cells grew normally in Met-Hcy+ media, whereas their parental MDAMB468 cells rapidly arrest in the G 1 phase. Remarkably, supplementing Met-Hcy+ growth media with S-adenosylmethionine suppressed the cell proliferation defects, indicating that methionine stress is a consequence of SAM limitation rather than low amino acid concentrations. Accordingly, mTORC1 activity, the primary effector responding to amino acid limitation, remained high. However, we found that levels of the replication factor Cdc6 decreased and pre-replication complexes were destabilized in methionine-stressed MDAMB468 but not resistant cells. Our study characterizes metabolite requirements and cell cycle responses that occur during methionine stress in breast cancer cells and helps explain the metabolic uniqueness of cancer cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Regulação para Baixo/efeitos dos fármacos , Metionina/farmacologia , Proteínas Nucleares/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatina/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Homocisteína/farmacologia , Humanos , Células MCF-7 , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos , Fosforilação , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , S-Adenosilmetionina/farmacologia , Serina-Treonina Quinases TOR
6.
Biotechnol J ; 3(4): 524-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18320568

RESUMO

An epitope tag introduced to a gene of interest (GOI) greatly increases the ease of studying cellular proteins. Rapid PCR-based strategies for epitope tagging a protein's C-terminus at its native gene locus are widely used in yeast. C-terminal epitope tagging is not suitable for all proteins, however. Epitope tags fused to the C-terminus can interfere with function of some proteins or can even be removed by C-terminal protein processing. To overcome such problems, proteins can be tagged with epitopes at their amino-termini, but generating yeast strains expressing N-terminal epitope tagged genes under control of the endogenous promoter at the native locus is comparatively more difficult. Strategies to introduce N-terminal epitope tags have been reported previously but often introduce additional sequences other than the epitope tag into the genome. Furthermore, N-terminal tagging of essential genes by current methods requires formation of diploid strains followed by tetrad dissection or expression of an additional copy of the GOI from a plasmid. The strategies described here provide a quick, facile means of epitope tagging the N-terminus of both essential and nonessential genes in a two-step PCR-based procedure. The procedure has the significant advantage of leaving tagged genes under the control of their endogenous promoters, and no additional sequences other than the epitope tag encoding nucleotides are inserted into the genome.


Assuntos
Mapeamento de Epitopos/métodos , Reação em Cadeia da Polimerase/métodos , Engenharia de Proteínas/métodos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/fisiologia , Especificidade da Espécie
7.
Methods Mol Biol ; 389: 239-50, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17951647

RESUMO

This chapter describes the different methods used for localization of proteins and organelles in Pichia pastoris. A series of plasmids and a modified immunofluorescence protocol for localization and co-localization of proteins and organelles are described. Also included are protocols for the labeling of different subcellular organelles with vital stains.


Assuntos
Organelas/metabolismo , Pichia/citologia , Pichia/metabolismo , Proteínas/metabolismo , Núcleo Celular/metabolismo , Imunofluorescência , Indóis , Viabilidade Microbiana , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Transporte Proteico , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...