RESUMO
Previous studies indicated atypical Theory of Mind (ToM) abilities in individuals with autism spectrum disorder (ASD) at different ages. However, research focused on adolescents with ASD is still rare. This study aims to fill the gaps in the literature, by investigating ToM abilities in adolescents with ASD and in a group of typically developing ones. We applied the Theory of Mind Assessment Scale (Th.o.m.a.s.), a semi-structured interview that allows a multi-dimensional measurement of ToM, including different perspectives (first/s-order, first/third-person, egocentric/allocentric), various mental states (emotions, desires, beliefs) and metacognitive abilities related with mental states (awareness, relation, and strategies). The results indicated that ToM develops atypically in ASD, with strengths and weaknesses. First, participants with ASD were comparable to controls in some specific ToM aspects, i.e., third-person ToM, both from an egocentric and an allocentric perspective. However, they were significantly weaker in attributing an understanding of the mental states of others, both in first- and second-order ToM scenarios. Second, they showed the same level of awareness about mental states as controls, but they were significantly weaker in conceptualizing the relationship between mental states and behavior. Also, they found it very difficult to think about possible strategies that they or others might employ to realize desires and needs. Finally, they performed similarly to controls in understanding emotions, while they poorly understood desires and beliefs. These results point out the distinctive characteristics of ToM development in individuals with ASD, with important implications for individualized interventions.
RESUMO
The consumption of a high-fat diet (HFD) represents a risk factor for diseases such as obesity, diabetes, insulin resistance (IR), and different brain disorders. HFD-induced obesity is linked with systemic and neuroinflammation implicated in the pathogenesis of metabolic impairment and epilepsy. In this study, we studied the negative effects of HFD consumption (16 weeks) on absence epilepsy and behavior comorbidities in WAG/Rij rats, a well-validated idiopathic model of absence epilepsy and comorbidities. Moreover, we investigated how, by restoring a normocaloric diet (NCD; 12 weeks), epileptic seizures and neuropsychiatric comorbidities could improve. We found that the HFD group showed a worsening of absence seizures, aggravation of depressive-like behavior, and performance in learning and memory than the NCD group even in the absence of hyperglycemia and/or obesity. In addition, intestinal villus rupture, inflammatory infiltrate, and intestinal permeability alteration increased after prolonged HFD intake, which could prevent weight gain. Inflammatory protein levels were found higher in the colon of the HFD group than in the NCD group, and also in the cortex and hippocampus, regions involved in absence seizures and behavioral alterations. After replacing HFD with NCD, a reduction in absence seizures and behavioral alterations was observed, and this decrease was well correlated with an improvement in inflammatory pathways. In conclusion, HFD consumption is sufficient to disrupt gut integrity resulting in systemic and brain inflammation contributing to the worsening of absence epilepsy and its comorbidities also without obesity development. These alterations can be improved by switching back the diet to NCD.
RESUMO
BACKGROUND: The treatment of psoriasis has made considerable progress with biologicals, including tumor necrosis factor inhibitors, and recently, monoclonal antibodies inhibiting directly interleukin (IL) 17, IL-23, or both IL-12/23. Newer biologicals are directed to the interleukin pathway and appear to improve complete or near-complete clearance. The newer biologicals have also been shown to have an excellent safety profile. However, despite experience with patients having confirmed the results obtained in clinical trials, there are still few data on using the newer biologicals. METHODS: The present active study aimed to prospectively evaluate safety profiles and persistence of some biologicals in a multicenter pharmacovigilance study, that enrolled 733 patients treated with a biologic drug in five Calabrian hospital units. Informative and treatment persistence evaluations with predictors for suspension and occurrence of adverse events (AEs) were executed. In particular, reasons for treatment discontinuation in our program take account of primary/secondary failure or development of an AE. RESULTS: AEs occurred in 187/733 patients and serious AEs (SAEs) were identified in 5/733 patients. An number of 182/733 patients showed a primary/secondary inefficacy. The AEs and SAEs were described with adalimumab, infliximab, and etanercept but not with abatacept, brodalumab, tildrakizumab, golinumab, ixekizumab, guselkumab, risankizumab, secukinumab, and ustekinumab. CONCLUSIONS: Our analysis, although limited by a small sample size and a short-term follow-up period, offers suitable data on commonly used biological agents and their safety, interruption rate, and the attendance of SAEs. Real-world studies should be carried out to evaluate other safety interests.
RESUMO
Chromogranin A (CgA), a â¼ 49 kDa acidic secretory protein, is ubiquitously distributed in endocrine and neuroendocrine cells and neurons. As a propeptide, CgA is proteolytically cleaved to generate several peptides of biological importance, including pancreastatin (PST: hCgA250-301), Vasostatin 1 (VS1: hCgA1-76), and catestatin (CST: CgA 352-372). VS1 represents the most conserved fragment of CgA. A 20 amino acid domain within VS1 (CgA 47-66) exhibits potent antimicrobial and anti-inflammatory activities. Autism is known to be associated with inflammation. Therefore, we seek to test the hypothesis that VS1 modulates autism behaviors by reducing inflammation in the hippocampus. Treatment of C57BL/6 (B6) and BTBR (a mouse model of idiopathic autism) mice with VS1 revealed the following: BTBR mice showed a significant decrease in chamber time in the presence of a stranger or a novel object. Treatment with VS1 significantly increased chamber time in both cases, underscoring a crucial role for VS1 in improving behavioral deficits in BTBR mice. In contrast to chamber time, sniffing time in BTBR mice in the presence of a stranger was less compared to B6 control mice. VS1 did not improve this latter parameter. Surprisingly, sniffing time in BTBR mice in the presence of a novel object was comparable with B6 mice. Proinflammatory cytokines such as IL-6 and IL-1b, as well as other inflammatory markers, were elevated in BTBR mice, which were dramatically reduced after supplementation with VS1. Interestingly, even Beclin-1/p62, pAKT/AKT, and p-p70-S6K/p70-S6K ratios were notably reduced by VS1. We conclude that VS1 plays a crucial role in restoring autistic spectrum disorders (ASD) plausibly by attenuating neuroinflammation.
Assuntos
Transtorno Autístico , Cromogranina A , Modelos Animais de Doenças , Hipocampo , Doenças Neuroinflamatórias , Fragmentos de Peptídeos , Animais , Masculino , Camundongos , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/metabolismo , Cromogranina A/farmacologia , Cromogranina A/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/tratamento farmacológico , Fragmentos de Peptídeos/farmacologiaRESUMO
Prolonged exposure to lead has been recognized as harmful to human health as it may cause neurotoxic effects including mitochondrial damage, apoptosis, excitotoxicity, and myelin formation alterations, among others. Numerous data have shown that consuming olive oil and its valuable components could reduce neurotoxicity and degenerative conditions. Olive oil is traditionally obtained from olive trees; this plant (Olea europaea L.) is an evergreen fruit tree.In this manuscript, two extracts have been used and compared: the extract from the leaves of Olea europaea L. (OE) and the extract derived from OE but with a further sonication process (s-OE). Therefore, the objectives of this experimental work were as follows: 1) to generate an innovative extract; 2) to test both extracts on a model of neurotoxicity of human neurons induced following lead exposure; and 3) to study the mechanisms behind lead-induced neurotoxicity.The results showed that the mechanism involved in the neurotoxicity of lead included dysfunction of the cellular endoplasmic reticulum, which suffered oxidative damage. In addition, in all experiments, s-OE was more effective than OE, having greater and better effects against lead-induced damage and being dissolved in a smaller amount of EtOH, which promotes its sustainability.
Assuntos
Retículo Endoplasmático , Neurônios , Olea , Extratos Vegetais , Olea/química , Extratos Vegetais/farmacologia , Humanos , Neurônios/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Chumbo/toxicidade , Folhas de Planta/química , Síndromes Neurotóxicas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacosRESUMO
Individuals with schizophrenia have difficulty attributing mental states to themselves and to others - Theory of Mind (ToM). ToM is a complex, multifaceted theoretical construct comprising first and second order, first and third person, egocentric and allocentric perspective, and cognitive and affective ToM. Most studies addressing ToM deficit in people with schizophrenia consider it an "all-or-nothing" ability and use a classical statistical methodology to test a null hypothesis. With the present study, we investigated ToM in individuals with schizophrenia, considering its complex nature and degrees of impairment. To do this, we used a machine-learning approach to detect patterns in heterogeneous and multivariate data. Our findings highlight the complex nature of ToM deficit in individuals with schizophrenia and reveal the relationship between various different aspects of ToM.
Assuntos
Carcinoma de Células em Anel de Sinete , Neoplasias da Vesícula Biliar , Humanos , Masculino , Pessoa de Meia-Idade , Autopsia , Carcinoma de Células em Anel de Sinete/complicações , Carcinoma de Células em Anel de Sinete/patologia , Embolia/etiologia , Embolia/patologia , Embolia/complicações , Neoplasias da Vesícula Biliar/complicações , Neoplasias da Vesícula Biliar/patologiaRESUMO
Temporal lobe epilepsy (TLE) represents the most common form of refractory focal epilepsy. The identification of innovative clinical biomarkers capable of categorizing patients with TLE, allowing for improved treatment and outcomes, still represents an unmet need. Circulating microRNAs (c-miRNAs) are short non-coding RNAs detectable in body fluids, which play crucial roles in the regulation of gene expression. Their characteristics, including extracellular stability, detectability through non-invasive methods, and responsiveness to pathological changes and/or therapeutic interventions, make them promising candidate biomarkers in various disease settings. Recent research has investigated c-miRNAs in various bodily fluids, including serum, plasma, and cerebrospinal fluid, of TLE patients. Despite some discrepancies in methodologies, cohort composition, and normalization strategies, a common dysregulated signature of c-miRNAs has emerged across different studies, providing the basis for using c-miRNAs as novel biomarkers for TLE patient management.
RESUMO
Chronic wounds represent silent epidemic affecting a large portion of the world population, especially the elders; in this context, the development of advanced bioactive dressings is imperative to accelerate wound healing process, while contrasting or preventing infections. The aim of the present work was to provide a deep characterization of the functional and biopharmaceutical properties of a sustainable thin and flexible films, composed of whey proteins alone (WPI) and added with nanostructured zinc oxide (WPZ) and intended for the management of chronic wounds. The potential of whey proteins-based films as wound dressings has been confirmed by their wettability, hydration properties, elastic behavior upon hydration, biodegradation propensity and, when added with nanostructured zinc oxide, antibacterial efficacy against both Gram-positive and Gram-negative pathogens, i.e. Staphylococcus aureus and Escherichia coli. In-vitro experiments, performed on normal human dermal fibroblasts, confirmed film cytocompatibility, also revealing the possible role of Zn2+ ions in promoting fibroblast proliferation. Finally, in-vivo studies on rat model confirmed film suitability to act as wound dressing, since able to ensure a regular healing process while providing effective protection from infections. In particular, both films WPI and WPZ are responsible for the formation in the wound bed of a continuous collagen layer similar to that of healthy skin.
Assuntos
Produtos Biológicos , Óxido de Zinco , Humanos , Ratos , Animais , Idoso , Óxido de Zinco/farmacologia , Proteínas do Soro do Leite/farmacologia , Antibacterianos/farmacologia , ColágenoRESUMO
Growing epidemiological studies highlight a bi-directional relationship between depressive symptoms and diabetes mellitus. However, the detrimental impact of their co-existence on mental health suggests the need to treat this comorbidity as a separate entity rather than the two different pathologies. Herein, we characterized the peculiar mechanisms activated in mouse hippocampus from the concurrent development of hyperglycaemia, characterizing the different diabetes subtypes, and chronic stress, recognized as a possible factor predisposing to major depression. Our work demonstrates that kynurenine overproduction, leading to apoptosis in the hippocampus, is triggered in a different way depending on hyperglycaemia or chronic stress. Indeed, in the former, kynurenine appears produced by infiltered macrophages whereas, in the latter, peripheral kynurenine preferentially promotes resident microglia activation. In this scenario, QA, derived from kynurenine catabolism, appears a key mediator causing glutamatergic synapse dysfunction and apoptosis, thus contributing to brain atrophy. We demonstrated that the coexistence of hyperglycaemia and chronic stress worsened hippocampal damage through alternative mechanisms, such as GLUT-4 and BDNF down-expression, denoting mitochondrial dysfunction and apoptosis on one hand and evoking the compromission of neurogenesis on the other. Overall, in the degeneration of neurovascular unit, hyperglycaemia and chronic stress interacted each other as the partners of a "West Coast Swing" in which the leading role can be assumed alternatively by each partner of the dance. The comprehension of these mechanisms can open novel perspectives in the management of diabetic/depressed patients, but also in the understanding the pathogenesis of other neurodegenerative disease characterized by the compromission of hippocampal function.
Assuntos
Transtorno Depressivo Maior , Hiperglicemia , Doenças Neurodegenerativas , Animais , Camundongos , Humanos , Cinurenina , HipocampoRESUMO
Introduction: Cardiovascular diseases (CVDs) are the most important cause of premature death and disability worldwide. Environmental degradation and cardiovascular diseases are two keys to health challenges, characterized by a constant evolution in an industrialized world that exploits natural resources regardless of the consequences for health. The etiological risk factors of CVDs are widely known and include dyslipidemia, obesity, diabetes, and chronic cigarette consumption. However, one component that is often underestimated is exposure to heavy metals. The biological perspective explains that different metals play different roles. They are therefore classified into essential heavy metals, which are present in organisms where they perform important vital functions, especially in various physiological processes, or non-essential heavy metals, with a no biological role but, nonetheless, remain in the environment in which they are absorbed. Although both types of metal ions are many times chemically similar and can bind to the same biological ligands, the attention given today to nonessential metals in several eukaryotic species is starting to raise strong concerns due to an exponential increase in their concentrations. The aim of this systematic review was to assess possible correlations between exposure to nonessential heavy metals and increased incidence of cardiovascular disease, reporting the results of studies published in the last 5 years through March 2023. Methods: The studies includes reviews retrieved from PubMed, Medline, Embase, and Web of Science databases, in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement and following the PICO (Population Intervention Comparison Outcome Population) framework. Results: Eight reviews, including a total of 153 studies, were identified. Seven of these review enlighted the association between CVDs and non-essential heavy metals chronic exposure. Discussion: It is evident that exposure to heavy metals represent a risk factor for CVDs onset. However, further studies are needed to better understand the effects caused by these metals.
RESUMO
Alzheimer's disease (AD) is a major global health problem today and is the most common form of dementia. AD is characterized by the formation of ß-amyloid (Aß) plaques and neurofibrillary clusters, leading to decreased brain acetylcholine levels in the brain. Another mechanism underlying the pathogenesis of AD is the abnormal phosphorylation of tau protein that accumulates at the level of neurofibrillary aggregates, and the areas most affected by this pathological process are usually the cholinergic neurons in cortical, subcortical, and hippocampal areas. These effects result in decreased cognitive function, brain atrophy, and neuronal death. Malnutrition and weight loss are the most frequent manifestations of AD, and these are also associated with greater cognitive decline. Several studies have confirmed that a balanced low-calorie diet and proper nutritional intake may be considered important factors in counteracting or slowing the progression of AD, whereas a high-fat or hypercholesterolemic diet predisposes to an increased risk of developing AD. Especially, fruits, vegetables, antioxidants, vitamins, polyunsaturated fatty acids, and micronutrients supplementation exert positive effects on aging-related changes in the brain due to their antioxidant, anti-inflammatory, and radical scavenging properties. The purpose of this review is to summarize some possible nutritional factors that may contribute to the progression or prevention of AD, understand the role that nutrition plays in the formation of Aß plaques typical of this neurodegenerative disease, to identify some potential therapeutic strategies that may involve some natural compounds, in delaying the progression of the disease.
Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/metabolismo , Micronutrientes/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Suplementos Nutricionais , Cognição , Antioxidantes/uso terapêuticoRESUMO
Clinical studies documented that cenobamate (CNB) has a marked efficacy compared to other antiseizure medications (ASMs) in reducing focal seizures. To date, different aspects of CNB need to be clarified, including its efficacy against generalized seizures. Similarly, the pattern of drug-drug interactions between CNB and other ASMs also compels further investigation. This study aimed to detect the role of CNB on generalized seizures using the DBA/2 mouse model. We have also studied the effects of an adjunctive CNB treatment on the antiseizure properties of some ASMs against reflex seizures. The effects of this adjunctive treatment on motor performance, body temperature, and brain levels of ASMs were also evaluated. CNB was able to antagonize seizures in DBA/2 mice. CNB, at 5 mg/kg, enhanced the antiseizure activity of ASMs, such as diazepam, clobazam, levetiracetam, perampanel, phenobarbital, topiramate, and valproate. No synergistic effects were observed when CNB was co-administered with some Na+ channel blockers. The increase in antiseizure activity was associated with a comparable intensification in motor impairment; however, the therapeutic index of combined treatment of ASMs with CNB was more favorable than the combination with vehicle except for carbamazepine, phenytoin, and oxcarbazepine. Since CNB did not significantly influence the brain levels of the ASMs studied, we suggest that pharmacokinetic interactions seem not probable. Overall, this study shows the ability of CNB to counteract generalized reflex seizures in mice. Moreover, our data documented an evident synergistic antiseizure effect for the combination of CNB with ASMs including phenobarbital, benzodiazepines, valproate, perampanel, topiramate, and levetiracetam.
Assuntos
Anticonvulsivantes , Epilepsia Reflexa , Camundongos , Animais , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/farmacocinética , Epilepsia Reflexa/tratamento farmacológico , Ácido Valproico/farmacologia , Topiramato/uso terapêutico , Levetiracetam/farmacologia , Levetiracetam/uso terapêutico , Sinergismo Farmacológico , Camundongos Endogâmicos DBA , Convulsões/tratamento farmacológico , Fenobarbital/uso terapêuticoRESUMO
Face masks play a role in reducing the spread of airborne pathogens, providing that they have a good filtration performance, are correctly fitted and maintained. Bacterial Filtration Efficiency (BFE) is a key indicator for evaluating filtration performance according to both European and US standards, requiring the use of Staphylococcus aureus loaded aerosol. However, the generation and handling of a Biohazard group 2 bacterium aerosol require a careful management of the biological risk and pose limitations to the accessibility to this method. To mitigate these drawbacks, we investigated the use of S. epidermidis ATCC 12228, a Biohazard group 1 bacterium, as surrogate in BFE test. To this end, tests with the surrogate strain were performed to tune the method. Then, three face mask models, representative for both surgical and community masks, were tested according to the standard method and then using an aerosolized suspension of S. epidermidis. BFE% values were calculated for each mask model and tested microorganisms. Results showed that BFE test can be performed using the S. epidermidis instead of S. aureus, preserving results validity and turnaround time, but reducing residual risk for laboratory operators.
Assuntos
Máscaras , Staphylococcus aureus , Staphylococcus epidermidis , Filtração , Aerossóis , Substâncias PerigosasRESUMO
Epilepsy is a chronic neurological disease characterized by abnormal brain activity, which results in repeated spontaneous seizures. Sudden unexpected death in epilepsy (SUDEP) is the leading cause of seizure-related premature death, particularly in drug-resistant epilepsy patients. The etiology of SUDEP is a structural injury to the brain that is not fully understood, but it is frequently associated with poorly controlled and repeated generalized tonic-clonic seizures (GTCSs) that cause cardiorespiratory and autonomic dysfunctions, indicating the involvement of the brainstem. Both respiratory and cardiac abnormalities have been observed in SUDEP, but not much progress has been made in their prevention. Owing to the complexity of SUDEP, experimental animal models have been used to investigate cardiac and/or respiratory dysregulation due to or associated with epileptic seizures that may contribute to death in humans. Numerous rodent models, especially mouse models, have been developed to better understand epilepsy and SUDEP physiopathology. This review synthesizes the current knowledge about dilute brown agouti coat color (DBA/2) mice as a possible SUDEP model because respiratory arrest (RA) and sudden death induced by audiogenic generalized seizures (AGSs) have been observed in these animals. Respiratory/cardiac dysfunction, brainstem arousal system dysfunction, and alteration of the neurotransmitter systems, which are observed in human SUDEP, have also been observed in these mice. In particular, serotonin (5-HT) alteration and adenosine neurotransmission appear to contribute to not only the pathophysiological mechanisms of medication but also seizure-related respiratory dysfunctions in this animal model. These neurotransmitter systems could be the relevant targets for medication development for chronic epilepsy and SUDEP prevention. We reviewed data on AGSs in DBA/2 mice and the relevance of this model of generalized tonic-clonic epilepsy to human SUDEP. Furthermore, the advantages of using this strain prone to AGSs for the identification of possible new therapeutic targets and treatment options have also been assessed.
RESUMO
Alzheimer's disease (AD) and epilepsy are common neurological disorders in the elderly. A bi-directional link between these neurological diseases has been reported, with patients with either condition carrying almost a two-fold risk of contracting the other compared to healthy subjects. AD/epilepsy adversely affects patients' quality of life and represents a severe public health problem. Thus, identifying the relationship between epilepsy and AD represents an ongoing challenge and continuing need. Seizures in AD patients are often unrecognized because they are often nonconvulsive and sometimes mimic some behavioral symptoms of AD. Regarding this, it has been hypothesized that epileptogenesis and neurodegeneration share common underlying mechanisms. Targeted treatment to decrease epileptiform activity could represent a valuable strategy for delaying the neurodegenerative process and related cognitive impairment. Several preclinical studies have shown that some antiseizure medications (ASMs) targeting abnormal network hyperexcitability may change the natural progression of AD. However, to date, no guidelines are available for managing seizures in AD patients because of the paucity of randomized clinical trials sufficient for answering the correlated questions. Future AD clinical studies are mandatory to update clinicians about the symptomatic treatment of seizures in AD patients and recognize whether ASM therapy could change the natural progression of the disease, thereby rescuing cognitive performance.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Humanos , Doença de Alzheimer/tratamento farmacológico , Qualidade de Vida , Convulsões/tratamento farmacológico , Convulsões/etiologia , Voluntários SaudáveisRESUMO
Neurodegenerative diseases (NDs) affect millions of people worldwide, and to date, Alzheimer's and Parkinson's diseases are the most common NDs. Of the many risk factors for neurodegeneration, the aging process has the most significant impact, to the extent that it is tempting to consider neurodegenerative disease as a manifestation of accelerated aging. However, genetic and environmental factors determine the course of neurodegenerative disease progression. It has been proposed that environmental stimuli influence neuroplasticity. Some clinical studies have shown that healthy lifestyles and the administration of nutraceuticals containing bioactive molecules possessing antioxidant and anti-inflammatory properties have a preventive impact or mitigate symptoms in previously diagnosed patients. Despite ongoing research efforts, the therapies currently used for the treatment of NDs provide only marginal therapeutic benefits; therefore, the focus is now directly on the search for natural products that could be valuable tools in combating these diseases, including the natural compound Andrographis paniculata (Ap) and its main constituent, andrographolide (Andro). Preclinical studies have shown that the aqueous extract of Ap can modulate neuroinflammatory and neurodegenerative responses, reducing inflammatory markers and oxidative stress in various NDs. Therefore, in this review, we will focus on the molecular mechanisms by which Ap and Andro can modulate the processes of neurodegeneration and neuroinflammation, which are significant causes of neuronal death and cognitive decline.
Assuntos
Andrographis , Doenças Neurodegenerativas , Humanos , Andrographis paniculata , Doenças Neuroinflamatórias , Doenças Neurodegenerativas/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêuticoRESUMO
Cochlear Implants (CIs) enhance linguistic skills in deaf or hard of hearing children (D/HH). However, the benefits of CIs have not been sufficiently studied, especially with regard to communicative-pragmatics, i.e., the ability to communicate appropriately in a specific context using different expressive means, such as language and extralinguistic or paralinguistic cues. The study aimed to assess the development of communicative-pragmatic ability, through the Assessment Battery for Communication (ABaCo), in school-aged children with CIs, to compare their performance to a group of children with typical auditory development (TA), and to investigate if CI received under the age of 24 months promotes the typical development of such ability. Results show that children with CIs performed significantly worse than TA on the paralinguistic and contextual scales of the ABaCo. Finally, the age of first implantation had a significant role in the development of communicative-pragmatic ability.
RESUMO
BACKGROUND: Riluzole (RLZ) has demonstrated neuroprotective effects in several neurological disorders. These neuroprotective effects seem to be mainly due to its ability to inhibit the excitatory glutamatergic neurotransmission, acting on different targets located both at the presynaptic and postsynaptic levels. METHODS: In the present study, we evaluated the effects of Riluzole (RLZ) against limbic seizures, induced by AMPA, kainate, and NMDA receptor agonists in Sprague-Dawley rats, and in a well-validated genetic model of absence epilepsy, the WAG/Rij rat. Furthermore, in this latter model, we also studied the effect of RLZ in co-administration with the competitive NMDA receptor antagonist, CPP, or the non-competitive AMPA receptor antagonist, THIQ-10c, on spike-wave discharges (SWDs) in WAG/Rij rats, to understand the potential involvement of AMPA and NMDA receptors in the anti-absence effect of RLZ. RESULTS: In Sprague-Dawley rats, RLZ pretreatment significantly reduced the limbic seizure severity induced by glutamatergic agonists, suggesting an antagonism of RLZ mainly on NMDA rather than non-NMDA receptors. RLZ also reduced SWD parameters in WAG/Rij rats. Interestingly, the co-administration of RLZ with CPP did not increase the anti-absence activity of RLZ in this model, advocating a competitive effect on the NMDA receptor. In contrast, the co-administration of RLZ with THIQ-10c induced an additive effect against absence seizure in WAG/Rij rats. CONCLUSIONS: these results suggest that the antiepileptic effects of RLZ, in both seizure models, can be mainly due to the antagonism of the NMDA glutamatergic receptors.
RESUMO
A balanced diet, rich in fruits and vegetables and ensuring the intake of natural products, has been shown to reduce or prevent the occurrence of many chronic diseases. However, the choice to consume large quantities of fruits and vegetables leads to an increase in the amount of waste, which can cause an alteration in environmental sustainability. To date, the concept of a "byproduct" has evolved, now being understood as a waste product from which it is still possible obtain useful compounds. Byproducts in the agricultural sector are a rich source of bioactive compounds, capable of possessing a second life, decreasing the amount of waste products, the disposal costs, and environmental pollution. A promising and well-known citrus of the Mediterranean diet is the bergamot (Citrus bergamia, Risso et Poiteau). The composition of bergamot is known, and the rich presence of phenolic compounds and essential oils has justified the countless beneficial properties found, including anti-inflammatory, antioxidant, anti-cholesterolemic, and protective activity for the immune system, heart failure, and coronary heart diseases. The industrial processing of bergamot fruits leads to the formation of bergamot juice and bergamot oil. The solid residues, referred to as "pastazzo", are normally used as feed for livestock or pectin production. The fiber of bergamot (BF) can be obtained from pastazzo and could exert an interesting effect thanks to its content of polyphenols. The aims of this work were twofold: (a) to have more information (composition, polyphenol and flavonoid content, antioxidant activity, etc.) on BF powder and (b) to verify the effects of BF on an in vitro model of neurotoxicity induced by treatment with amyloid beta protein (Aß). In particular, a study of cell lines was carried out on both neurons and oligodendrocytes, to measure the involvement of the glia and compare it with that of the neurons. The results obtained showed that BF powder contains polyphenols and flavonoids and that it is able to exercise an antioxidant property. Moreover, BF exerts a protective action on the damage induced by treatment with Aß, and this defense is found in experiments on the cell viability, on the accumulation of reactive oxygen species, on the involvement of the expression of caspase-3, and on necrotic or apoptotic death. In all these results, oligodendrocytes were always more sensitive and fragile than neurons. Further experiments are needed, and if this trend is confirmed, BF could be used in AD; at the same time, it could help to avoid the accumulation of waste products.