Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1424: 233-240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37486499

RESUMO

In an attempt to develop therapeutic agents to treat Alzheimer's disease, a series of flavonoid analogues were collected, which already had established acetylcholinesterase (AChE) enzyme inhibition activity. For each molecule we also collected biological activity data (Ki). Then, 3D-QSAR (quantitative structure-activity relationship model) was developed which showed acceptable predictive and descriptive capability as represented by standard statistical parameters r2 and q2. This SAR data can explain the key descriptors which can be related to AChE inhibitory activity. Using the QSAR model, pharmacophores were developed based on which, virtual screening was done and a dataset was obtained which loaded as a prediction set to fit the developed QSAR model. Top 10 compounds fitting the QSAR model were subjected to molecular docking. CHEMBL1718051 was found to be the lead compound. This study is offering an example of a computationally-driven tool for prioritisation and discovery of probable AChE inhibitors. Further, in vivo and in vitro testing will show its therapeutic potential.


Assuntos
Inibidores da Colinesterase , Relação Quantitativa Estrutura-Atividade , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Flavonoides/farmacologia , Simulação de Acoplamento Molecular , Acetilcolinesterase/metabolismo
2.
Adv Exp Med Biol ; 1423: 237-243, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37525050

RESUMO

Vascular dementia (VaD) accounts to 30% of cases and is predicted as second most common form of dementia after Alzheimer's disease by WHO. Earlier studies reported that plant-derived pentacyclic triterpenoids possess a wide range of pharmacological activities but these compounds are not extensively studied for their neuroprotective potential against VaD. This in silico approach was designed to screen 20 pentacyclic triterpenoid plant compounds against known targets of VaD using Flare software. S-Adenyl homocysteine hydrolase, Acetylcholinesterase, and Butyrylcholinesterase were selected as important VaD targets, and various parameters like intermolecular interaction energies, binding energy, and dock scores were analyzed and compared between selected ligands. Our results showed that Ursolic acid has lowest binding energy when docked with most of the target proteins, and among all 20 pentacyclic triterpenoids studied, only three ligands Betulinic acid, Ambolic acid, and Madecassic acid, showed better binding energy scores, and they can be shortlisted as lead compounds to further study their therapeutic potential against VaD using in vitro and in vivo animal models.


Assuntos
Antineoplásicos , Demência Vascular , Triterpenos , Animais , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/uso terapêutico , Triterpenos Pentacíclicos/química , Demência Vascular/tratamento farmacológico , Acetilcolinesterase , Butirilcolinesterase , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Triterpenos/química , Plantas/metabolismo
3.
Phytomedicine ; 108: 154520, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334386

RESUMO

BACKGROUND: The development of digital technologies and the evolution of open innovation approaches have enabled the creation of diverse virtual organizations and enterprises coordinating their activities primarily online. The open innovation platform titled "International Natural Product Sciences Taskforce" (INPST) was established in 2018, to bring together in collaborative environment individuals and organizations interested in natural product scientific research, and to empower their interactions by using digital communication tools. METHODS: In this work, we present a general overview of INPST activities and showcase the specific use of Twitter as a powerful networking tool that was used to host a one-week "2021 INPST Twitter Networking Event" (spanning from 31st May 2021 to 6th June 2021) based on the application of the Twitter hashtag #INPST. RESULTS AND CONCLUSION: The use of this hashtag during the networking event period was analyzed with Symplur Signals (https://www.symplur.com/), revealing a total of 6,036 tweets, shared by 686 users, which generated a total of 65,004,773 impressions (views of the respective tweets). This networking event's achieved high visibility and participation rate showcases a convincing example of how this social media platform can be used as a highly effective tool to host virtual Twitter-based international biomedical research events.


Assuntos
Produtos Biológicos , Mídias Sociais , Humanos
4.
Eur J Pharmacol ; 910: 174492, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34516952

RESUMO

Neurodegenerative disorders pose a significant health burden and imprint a debilitative impact on the quality of life. Importantly, aging is intricately intertwined with the progression of these disorders, and their prevalence increases with a rise in the aging population worldwide. In recent times, fisetin emerged as one of the potential miracle molecules to address neurobehavioral and cognitive abnormalities. These effects were attributed to its actions on several macromolecules and multiple molecular mechanisms. Fisetin belongs to a class of flavonoids, which is found abundantly in several fruits and vegetables. Fisetin has manifested several health benefits in preclinical models of neurodegenerative diseases such as Alzheimer's disease, Vascular dementia, and Schizophrenia. Parkinson's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, Stroke, Traumatic Brain Injury (TBI), and age-associated changes. This review aimed to evaluate the potential mechanisms and pharmacological effects of fisetin in treating several neurological diseases. This review also provides comprehensive data on up-to-date recent literature and highlights the various mechanistic pathways pertaining to fisetin's neuroprotective role.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Flavonóis/farmacologia , Doenças do Sistema Nervoso/tratamento farmacológico , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Modelos Animais de Doenças , Flavonóis/uso terapêutico , Produtos Finais de Glicação Avançada/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Memória/efeitos dos fármacos , Doenças do Sistema Nervoso/imunologia , Doenças do Sistema Nervoso/patologia , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
5.
Adv Exp Med Biol ; 1195: 1-11, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32468451

RESUMO

Parkinson's disease (PD) is a major cause of morbidity and mortality among older individuals. Several researchers have suggested that iron chelators which cross the blood-brain barrier (BBB) might have clinical efficacy in treating PD. Therefore, efforts are made not only in order to improve the effect of L-dopa but also to introduce drugs which provide anti-parkinsonian and neuroprotective effects. In this study, quercetin, a flavonoid, exhibited noticeable neuroprotective effects via iron induced-oxidative stress-dependent apoptotic pathways. Our results suggested that quercetin significantly decreased the catalepsy and exhibited neuroprotective effects in rotenone-induced Parkinson. A model of rotenone-induced Parkinsonism in rats produced the decrease in glutathione, SOD, catalase, and serum iron concentration and the increase in H2O2 and lipid peroxidation activity. Quercetin efficiently halted the deleterious toxic effects of L-dopa, revealing normalization of catalepsy and rotarod score, in addition to amelioration of neurochemical parameters, indicating benefit of both symptomatic and neuroprotective therapies. In silico molecular docking studies have also shown that quercetin could be an ideal potential drug target for aromatic L-amino acid decarboxylase and human catechol-O-methyltransferase. In conclusion, quercetin possesses strong iron-chelating abilities and could be recommended as a disease-modifying therapy when administered in combination with L-dopa, early on in the course of Parkinson's disease.


Assuntos
Antiparkinsonianos/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Quercetina/uso terapêutico , Animais , Antiparkinsonianos/farmacologia , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Catecol O-Metiltransferase/metabolismo , Humanos , Levodopa/efeitos adversos , Levodopa/antagonistas & inibidores , Simulação de Acoplamento Molecular , Quercetina/farmacologia
6.
Adv Exp Med Biol ; 1195: 213-225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32468480

RESUMO

Vascular dementia (VaD) is well recognized as the second most familiar form of dementia in the aged population. The present study is aimed to investigate the neuroprotective effects of ethanolic extract of leaves of Ocimum sanctum (EEOS) against hyperhomocysteinemia (HHcy)-induced vascular dementia (VaD) in Wistar rats. HHcy was induced by administering L-methionine (1.7 g/kg, p.o) for 4 weeks. Donepezil (0.1 mg/kg, p.o.) and EEOS (100 mg/kg, 200 mg/kg, 400 mg/kg, p.o.) were administered from the 14th day of L-methionine treatment. The behavioral impairment caused due to HHcy in rats was assessed by the Morris water maze (MWM) and Y-maze tests using a video tracking system. Biochemical estimations and aortic ring assay were also performed followed by a molecular docking analysis of active chemical constituents present in the leaves of Ocimum sanctum Linn. In this study, the EEOS treatment in hyperhomocysteinemic rats has showed significant improvement in spatial learning and working memory performance. The EEOS treatment further increased nitric oxide bioavailability and significantly altered all serum and brain biochemical parameters in a dose-dependent manner. The docking analysis revealed that among all the phytoconstituents of Ocimum sanctum compound (IX), molludistin has showed good inhibitory activity against S-adenosyl homocysteine, thus preventing homocysteine formation and may be responsible for potential effects of EEOS against HHcy-induced VaD. From our results, we conclude that EEOS can be used as a promising adjunct therapy for treatment of HHcy-induced VaD and oxidative stress.


Assuntos
Demência Vascular/tratamento farmacológico , Demência Vascular/etiologia , Hiper-Homocisteinemia/complicações , Ocimum sanctum/química , Extratos Vegetais/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Demência Vascular/sangue , Demência Vascular/metabolismo , Homocisteína/sangue , Homocisteína/metabolismo , Hiper-Homocisteinemia/sangue , Aprendizagem em Labirinto/efeitos dos fármacos , Simulação de Acoplamento Molecular , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...