Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971398

RESUMO

The ectoderm is the outermost of the three germ layers of the early embryo that arise during gastrulation. Once the germ layers are established, the complex interplay of cellular proliferation, differentiation, and migration results in organogenesis. The ectoderm is the progenitor of both the surface ectoderm and the neural ectoderm. Notably, the surface ectoderm develops into the epidermis and its associated appendages, nails, external exocrine glands, olfactory epithelium, and the anterior pituitary. Specification, development, and homeostasis of these organs demand a tightly orchestrated gene expression program that is often dictated by epigenetic regulation. In this review, we discuss the recent discoveries that have highlighted the importance of chromatin regulatory mechanisms mediated by transcription factors, histone and DNA modifications that aid in the development of surface ectodermal organs and maintain their homeostasis post-development.

2.
Dev Cell ; 59(1): 1-3, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38194909

RESUMO

Eccrine glands secrete water onto the surface of human skin to regulate body temperature. In this issue of Developmental Cell, Dingwall et al. dissect the transcriptional signature of developing eccrine glands, and they also uncover a unique dermal niche that is responsible for promoting eccrine gland developmental progression.


Assuntos
Glândulas Écrinas , Pele , Humanos
3.
Sci Adv ; 10(3): eadi5791, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241368

RESUMO

The touch dome (TD) keratinocytes are specialized epidermal cells that intimately associate with the light touch sensing Merkel cells (MCs). The TD keratinocytes function as a niche for the MCs and can induce de novo hair follicles upon stimulation; however, how the TD keratinocytes are maintained during homeostasis remains unclear. scRNA-seq identified a specific TD keratinocyte marker, Tenascin-C (TNC). Lineage tracing of Tnc-expressing TD keratinocytes revealed that these cells maintain themselves as an autonomous epidermal compartment and give rise to MCs upon injury. Molecular characterization uncovered that, while the transcriptional and chromatin landscape of the TD keratinocytes is remarkably similar to that of the interfollicular epidermal keratinocytes, it also shares certain molecular signatures with the hair follicle keratinocytes. Our study highlights that the TD keratinocytes in the adult skin have molecular characteristics of keratinocytes of diverse epidermal lineages.


Assuntos
Queratinócitos , Tenascina , Tenascina/genética , Epiderme , Pele , Células de Merkel/fisiologia , Folículo Piloso
4.
Dev Biol ; 476: 173-188, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33839113

RESUMO

Mouse models of Spina bifida (SB) have been instrumental for identifying genes, developmental processes, and environmental factors that influence neurulation and neural tube closure. Beyond the prominent neural tube defects, other aspects of the nervous system can be affected in SB with significant changes in essential bodily functions such as urination. SB patients frequently experience bladder dysfunction and SB fetuses exhibit reduced density of bladder nerves and smooth muscle although the developmental origins of these deficits have not been determined. The Pax3 Splotch-delayed (Pax3Sp-d) mouse model of SB is one of a very few mouse SB models that survives to late stages of gestation. Through analysis of Pax3Sp-d mutants we sought to define how altered bladder innervation in SB might arise by tracing sacral neural crest (NC) development, pelvic ganglia neuronal differentiation, and assessing bladder nerve fiber density. In Pax3Sp-d/Sp-d fetal mice we observed delayed migration of Sox10+ NC-derived progenitors (NCPs), deficient pelvic ganglia neurogenesis, and reduced density of bladder wall innervation. We further combined NC-specific deletion of Pax3 with the constitutive Pax3Sp-d allele in an effort to generate viable Pax3 mutants to examine later stages of bladder innervation and postnatal bladder function. Neural crest specific deletion of a Pax3 flox allele, using a Sox10-cre driver, in combination with a constitutive Pax3Sp-d mutation produced postnatal viable offspring that exhibited altered bladder function as well as reduced bladder wall innervation and altered connectivity between accessory ganglia at the bladder neck. Combined, the results show that Pax3 plays critical roles within sacral NC that are essential for initiation of neurogenesis and differentiation of autonomic neurons within pelvic ganglia.


Assuntos
Crista Neural/inervação , Fator de Transcrição PAX3/genética , Bexiga Urinária/inervação , Animais , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Feminino , Gânglios , Masculino , Camundongos/embriologia , Camundongos Endogâmicos C57BL , Sistema Nervoso/embriologia , Crista Neural/fisiologia , Defeitos do Tubo Neural/genética , Neurogênese , Fator de Transcrição PAX3/fisiologia , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição SOXE , Região Sacrococcígea/inervação , Disrafismo Espinal/complicações , Disrafismo Espinal/genética , Bexiga Urinária/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...