RESUMO
Snake venoms contain various bradykinin-potentiating peptides (BPPs). First studied for their vasorelaxant properties due to angiotensin converting enzyme (ACE) inhibition, these molecules present a range of binding partners, among them the argininosuccinate synthase (AsS) enzyme. This has renewed interest in their characterization from biological sources and the evaluation of their pharmacological activities. In the present work, the low molecular weight fraction of Bothrops moojeni venom was obtained and BPPs were characterized by mass spectrometry. Eleven BPPs or related peptides were sequenced, and one of them, BPP-Bm01, was new. Interestingly, some oxidized BPPs were detected. The three most abundant peptides were BPP-Bm01, BPP-Bax12, and BPP-13a, and their putative interactions with the AsS enzyme were investigated in silico. A binding cavity for these molecules was predicted, and docking studies allowed their ranking. Three peptides were synthesized and submitted to vasorelaxation assays using rat aortic rings. While all BPPs were active, BPP-Bm01 showed the highest potency in this assay. This work adds further diversity to BPPs from snake venoms and suggests, for the first time, a putative binding pocket for these molecules in the AsS enzyme. This can guide the design of new and more potent AsS activators.
Assuntos
Aorta , Bothrops , Oligopeptídeos , Peptídeos , Serpentes Peçonhentas , Animais , Ratos , Brasil , Aorta/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/química , Bradicinina/farmacologia , Masculino , Venenos de Crotalídeos/farmacologia , Venenos de Crotalídeos/química , Ratos Wistar , Venenos de Serpentes/farmacologia , Vasodilatadores/farmacologia , Vasodilatadores/química , Estrutura MolecularRESUMO
The potential emergence of zoonotic diseases has raised significant concerns, particularly in light of the recent pandemic, emphasizing the urgent need for scientific preparedness. The bioprospection and characterization of new molecules are strategically relevant to the research and development of innovative drugs for viral and bacterial treatment and disease management. Amphibian species possess a diverse array of compounds, including antimicrobial peptides. This study identified the first bioactive peptide from Salamandra salamandra in a transcriptome analysis. The synthetic peptide sequence, which belongs to the defensin family, was characterized through MALDI TOF/TOF mass spectrometry. Molecular docking assays hypothesized the interaction between the identified peptide and the active binding site of the spike WT RBD/hACE2 complex. Although additional studies are required, the preliminary evaluation of the antiviral potential of synthetic SS-I was conducted through an in vitro cell-based SARS-CoV-2 infection assay. Additionally, the cytotoxic and hemolytic effects of the synthesized peptide were assessed. These preliminary findings highlighted the potential of SS-I as a chemical scaffold for drug development against COVID-19, hindering viral infection. The peptide demonstrated hemolytic activity while not exhibiting cytotoxicity at the antiviral concentration.
RESUMO
The existence of encrypted fragments with antimicrobial activity in human proteins has been thoroughly demonstrated in the literature. Recently, algorithms for the large-scale identification of these segments in whole proteomes were developed, and the pervasiveness of this phenomenon was stated. These algorithms typically mine encrypted cationic and amphiphilic segments of proteins, which, when synthesized as individual polypeptide sequences, exert antimicrobial activity by membrane disruption. In the present report, the human reference proteome was submitted to the software kamal for the uncovering of protein segments that correspond to putative intragenic antimicrobial peptides (IAPs). The assessment of the identity of these segments, frequency, functional classes of parent proteins, structural relevance, and evolutionary conservation of amino acid residues within their corresponding proteins was conducted in silico. Additionally, the antimicrobial and anticancer activity of six selected synthetic peptides was evaluated. Our results indicate that cationic and amphiphilic segments can be found in 2% of all human proteins, but are more common in transmembrane and peripheral membrane proteins. These segments are surface-exposed basic patches whose amino acid residues present similar conservation scores to other residues with similar solvent accessibility. Moreover, the antimicrobial and anticancer activity of the synthetic putative IAP sequences was irrespective to whether these are associated to membranes in the cellular setting. Our study discusses these findings in light of the current understanding of encrypted peptide sequences, offering some insights into the relevance of these segments to the organism in the context of their harboring proteins or as separate polypeptide sequences.
Assuntos
Anti-Infecciosos , Proteoma , Humanos , Proteoma/genética , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sequência de Aminoácidos , AminoácidosRESUMO
BACKGROUND: Some cationic and amphiphilic α-helical segments of proteins adsorb to prokaryotic membranes when synthesized as individual polypeptide sequences, resulting in broad and potent antimicrobial activity. However, amphiphilicity, a determinant physicochemical property for peptide-membrane interactions, can also be observed in some ß-sheets. METHODS: The software Kamal was used to scan the human reference proteome for short (7-11 amino acid residues) cationic and amphiphilic protein segments with the characteristic periodicity of ß-sheets. Some of the uncovered peptides were chemically synthesized, and antimicrobial assays were conducted. Biophysical techniques were used to probe the molecular interaction of one peptide with phospholipid vesicles, lipopolysaccharides (LPS) and the bacterium Escherichia coli. RESULTS: Thousands of compatible segments were found in human proteins, five were synthesized, and three presented antimicrobial activity in the micromolar range. Hs10, a nonapeptide fragment of the Complement C3 protein, could inhibit only the growth of tested Gram-negative microorganisms, presenting also little cytotoxicity to human fibroblasts. Hs10 interacted with LPS while transitioning from an unstructured segment to a ß-sheet and increased the hydrodynamic radius of LPS particles. This peptide also promoted morphological alterations in E. coli cells. CONCLUSIONS: Data presented herein introduce yet another molecular template to probe proteins in search for encrypted membrane-active segments and demonstrates that, using this approach, short peptides with low cytotoxicity and high selectivity to prokaryotic cells might be obtained. GENERAL SIGNIFICANCE: This work widens the biotechnological potential of the human proteome as a source of antimicrobial peptides with application in human health.
Assuntos
Anti-Infecciosos , Escherichia coli , Humanos , Escherichia coli/metabolismo , Peptídeos Antimicrobianos , Lipopolissacarídeos/farmacologia , Proteoma , Bactérias Gram-Negativas/metabolismo , Peptídeos/químicaRESUMO
Metabolic diseases are increasing at staggering rates globally. The peroxisome proliferator-activated receptors (PPARα/γ/δ) are fatty acid sensors that help mitigate imbalances between energy uptake and utilization. Herein, we report compounds derived from phenolic lipids present in cashew nut shell liquid (CNSL), an abundant waste byproduct, in an effort to create effective, accessible, and sustainable drugs. Derivatives of anacardic acid and cardanol were tested for PPAR activity in HEK293 cell co-transfection assays, primary hepatocytes, and 3T3-L1 adipocytes. In vivo studies using PPAR-expressing zebrafish embryos identified CNSL derivatives with varying tissue-specific activities. LDT409 (23) is an analogue of cardanol with partial agonist activity for PPARα and PPARγ. Pharmacokinetic profiling showed that 23 is orally bioavailable with a half-life of 4 h in mice. CNSL derivatives represent a sustainable source of selective PPAR modulators with balanced intermediate affinities (EC50 â¼ 100 nM to 10 µM) that provide distinct and favorable gene activation profiles for the treatment of diabetes and obesity.
Assuntos
Ácidos Anacárdicos/farmacologia , Anacardium/química , Nozes/química , PPAR alfa/agonistas , PPAR delta/agonistas , PPAR gama/agonistas , Células 3T3-L1 , Ácidos Anacárdicos/síntese química , Ácidos Anacárdicos/metabolismo , Ácidos Anacárdicos/farmacocinética , Animais , Desenho de Fármacos , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , PPAR alfa/química , PPAR delta/química , PPAR gama/química , Domínios Proteicos , Peixe-ZebraRESUMO
In addition to the morphophysiological changes experienced by amphibians during metamorphosis, they must also deal with a different set of environmental constraints when they shift from the water to the land. We found that Pithecopus azureus secretes a single peptide ([M + H]+ = 658.38 Da) at the developmental stage that precedes the onset of terrestrial behaviour. De novo peptide and cDNA sequencing revealed that the peptide, named PaT-2, is expressed in tandem and is a member of the tryptophyllins family. In silico studies allowed us to identify the position of reactive sites and infer possible antioxidant mechanisms of the compounds. Cell-based assays confirmed the predicted antioxidant activity in mammalian microglia and neuroblast cells. The potential neuroprotective effect of PaT-2 was further corroborated in FRET-based live cell imaging assays, where the peptide prevented lipopolysaccharide-induced ROS production and glutamate release in human microglia. In summary, PaT-2 is the first peptide expressed during the ontogeny of P. azureus, right before the metamorphosing froglet leaves the aquatic environment to occupy terrestrial habitats. The antioxidant activity of PaT-2, predicted by in silico analyses and confirmed by cell-based assays, might be relevant for the protection of the skin of P. azureus adults against increased O2 levels and UV exposure on land compared with aquatic environments.
Assuntos
Antioxidantes , Água , Animais , Antioxidantes/análise , Anuros/fisiologia , Humanos , Mamíferos , Peptídeos/análise , Pele , Água/análiseRESUMO
As part of our efforts to develop sustainable drugs for Alzheimer's disease (AD), we have been focusing on the inexpensive and largely available cashew nut shell liquid (CNSL) as a starting material for the identification of new acetylcholinesterase (AChE) inhibitors. Herein, we decided to investigate whether cardanol, a phenolic CNSL component, could serve as a scaffold for improved compounds with concomitant anti-amyloid and antioxidant activities. Ten new derivatives, carrying the intact phenolic function and an aminomethyl functionality, were synthesized and first tested for their inhibitory potencies towards AChE and butyrylcholinesterase (BChE). 5 and 11 were found to inhibit human BChE at a single-digit micromolar concentration. Transmission electron microscopy revealed the potential of five derivatives to modulate Aß aggregation, including 5 and 11. In HORAC assays, 5 and 11 performed similarly to standard antioxidant ferulic acid as hydroxyl scavenging agents. Furthermore, in in vitro studies in neuronal cell cultures, 5 and 11 were found to effectively inhibit reactive oxygen species production at a 10 µM concentration. They also showed a favorable initial ADME/Tox profile. Overall, these results suggest that CNSL is a promising raw material for the development of potential disease-modifying treatments for AD.
RESUMO
Colorectal cancer (CRC) ranks second as the leading cause of cancer-related deaths worldwide. N-glycosylation is one of the most common posttranslational protein modifications. Therefore, we studied the total serum N-glycome (TSNG) of 13 colon cancer patients compared to healthy controls using MALDI-TOF/MS and LC-MS. N-glycosylation of cancer tumor samples from the same cohort were further quantified using a similar methodology. In total, 23 N-glycan compositions were down-regulated in the serum of colon cancer patients, mostly galactosylated forms whilst the mannose-rich HexNAc2Hex7, the fucosylated bi-antennary glycan HexNAc4Hex5Fuc1NeuAc2, and the tetra-antennary HexNAc6Hex7NeuAc3 were up-regulated in serum. Hierarchical clustering analysis of TSNG correctly singled out 85% of the patients from controls. Albeit heterogenous, N-glycosylation of tumor samples showed overrepresented oligomannosidic, bi-antennary hypogalactosylated, and branched compositions related to normal colonic tissue, in both MALDI-TOF/MS and LC-MS analysis. Moreover, compositions found upregulated in tumor tissue were mostly uncorrelated to compositions in serum of cancer patients. Mass spectrometry-based N-glycan profiling in serum shows potential in the discrimination of patients from healthy controls. However, the compositions profile in serum showed no parallel with N-glycans in tumor microenvironment, which suggests a different origin of compositions found in serum of cancer patients.
RESUMO
Peptidase inhibitors (PIs) have been broadly studied due to their wide therapeutic potential for human diseases. A potent trypsin inhibitor from Tityus obscurus scorpion venom was characterized and named ToPI1, with 33 amino acid residues and three disulfide bonds. The X-ray structure of the ToPI1:trypsin complex, in association with the mass spectrometry data, indicate a sequential set of events: the complex formation with the inhibitor Lys32 in the trypsin S1 pocket, the inhibitor C-terminal residue Ser33 cleavage, and the cyclization of ToPI1 via a peptide bond between residues Ile1 and Lys32. Kinetic and thermodynamic characterization of the complex was obtained. ToPI1 shares no sequence similarity with other PIs characterized to date and is the first PI with CS-α/ß motif described from animal venoms. In its cyclic form, it shares structural similarities with plant cyclotides that also inhibit trypsin. These results bring new insights for studies with venom compounds, PIs, and drug design.
Assuntos
Ciclotídeos/química , Ciclotídeos/metabolismo , Venenos de Escorpião/química , Tripsina/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cricetulus , Ciclização , Modelos Moleculares , Ligação Proteica , Conformação ProteicaRESUMO
The aims of this study were to produce poly-É-caprolactone lipid-core nanocapsules containing lycopene-rich extract from red guava (LEG), to characterize those nanoparticles and to evaluate their cytotoxic effects on human breast cancer cells. Lipid-core nanocapsules containing the extract (nanoLEG) were produced by the method of interfacial deposition of the preformed polymer. The nanoparticles were characterized by Dynamic Light Scattering (DLS), Polydispersity Index, Zeta Potential, pH, Encapsulation Efficiency, Nanoparticle Tracking Analysis (NTA), Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM). Cell viability was evaluated by the MTT dye reduction method in the human breast cancer MCF-7 cell line and inhibition of ROS and NF-κB was assayed in living human microglial cell line (HMC3) by time-lapse images microscopy. A hemolytic activity assay was carried out with sheep blood. Data showed that nanoparticles average size was around 200 nm, nanoparticles concentration/mL was around 0.1 µM, negative zeta potential, pH < 5.0 and spherical shape, with low variation during a long storage period (7 months) at 5 °C, indicating stability of the system and protection against lycopene degradation. The percentage of encapsulation varied from 95% to 98%. The nanoLEG particles significantly reduced the viability of the MCF-7 cells after 24 h (61.47%) and 72 h (55.96%) of exposure, even at the lowest concentration tested (6.25-200 µg/ml) and improved on the cytotoxicity of free LEG to MCF-7. NanoLEG inhibited LPS-induced NF-kB activation and ROS production in microglial cells. The particles did not affect the membrane integrity of sheep blood erythrocytes at the concentrations tested (6.25-200 µg/mL). Thus, the formulation of lipid-core nanocapsules with a polysorbate 80-coated poly-É-caprolactone wall was efficiently applied to stabilize the lycopene-rich extract from red guava, generating a product with satisfactory physico-chemical and biological properties for application as health-promoting nanotechnology-based nutraceutical, emphasizing its potential to be used as a cancer treatment.
Assuntos
Neoplasias da Mama , Nanocápsulas , Psidium , Animais , Neoplasias da Mama/tratamento farmacológico , Caproatos , Humanos , Lactonas , Lipídeos , Licopeno , Extratos Vegetais/farmacologia , OvinosRESUMO
Amphibian skin is a multifunctional organ that plays key roles in defense, breathing, and water balance. In this study, skin secretion samples of the fire salamander (Salamandra salamandra) were separated using RP-HPLC and de novo sequenced using MALDI-TOF MS/MS. Next, we used an in silico platform to screen antioxidant molecules in the framework of density functional theory. One of the identified peptides, salamandrin-I, [M + H]+ = 1406.6 Da, was selected for solid-phase synthesis; it showed free radical scavenging activity against DPPH and ABTS radicals. Salamandrin-I did not show antimicrobial activity against Gram-positive and -negative bacteria. In vitro assays using human microglia and red blood cells showed that salamandrin-I has no cytotoxicity up to the concentration of 100 µM. In addition, in vivo toxicity tests on Galleria mellonella larvae resulted in no mortality at 20 and 40 mg/kg. Antioxidant peptides derived from natural sources are increasingly attracting interest. Among several applications, these peptides, such as salamandrin-I, can be used as templates in the design of novel antioxidant molecules that may contribute to devising strategies for more effective control of neurological disease.
Assuntos
Proteínas de Anfíbios/química , Proteínas de Anfíbios/farmacologia , Antioxidantes/farmacologia , Salamandra , Pele/química , Proteínas de Anfíbios/isolamento & purificação , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Dicroísmo Circular , Avaliação Pré-Clínica de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Mariposas/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Testes de ToxicidadeRESUMO
Following the treads of our previous works on the unveiling of bioactive peptides encrypted in plant proteins from diverse species, the present manuscript reports the occurrence of four proof-of-concept intragenic antimicrobial peptides in human proteins, named Hs IAPs. These IAPs were prospected using the software Kamal, synthesized by solid phase chemistry, and had their interactions with model phospholipid vesicles investigated by differential scanning calorimetry and circular dichroism. Their antimicrobial activity against bacteria, yeasts and filamentous fungi was determined, along with their cytotoxicity towards erythrocytes. Our data demonstrates that Hs IAPs are capable to bind model membranes while attaining α-helical structure, and to inhibit the growth of microorganisms at concentrations as low as 1µM. Hs02, a novel sixteen residue long internal peptide (KWAVRIIRKFIKGFIS-NH2) derived from the unconventional myosin 1h protein, was further investigated in its capacity to inhibit lipopolysaccharide-induced release of TNF-α in murine macrophages. Hs02 presented potent anti-inflammatory activity, inhibiting the release of TNF-α in LPS-primed cells at the lowest assayed concentration, 0.1 µM. A three-dimensional solution structure of Hs02 bound to DPC micelles was determined by Nuclear Magnetic Resonance. Our work exemplifies how the human genome can be mined for molecules with biotechnological potential in human health and demonstrates that IAPs are actual alternatives to antimicrobial peptides as pharmaceutical agents or in their many other putative applications.
Assuntos
Anti-Infecciosos/síntese química , Anti-Inflamatórios/síntese química , Peptídeos/farmacologia , Animais , Eritrócitos/efeitos dos fármacos , Humanos , Lipossomos/metabolismo , Macrófagos/metabolismo , Camundongos , Micelas , Peptídeos/análise , Peptídeos/síntese química , Peptídeos/metabolismo , Conformação Proteica em alfa-Hélice , Proteínas/química , Técnicas de Síntese em Fase Sólida , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Pseudomonas aeruginosa and Staphylococcus aureus are two major pathogens involved in a large variety of infections. Their co-occurrence in the same site of infection has been frequently reported and is linked to enhanced virulence and difficulty of treatment. Herein, the antimicrobial and antibiofilm activities of an intragenic antimicrobial peptide (IAP), named Hs02, which was uncovered from the human unconventional myosin 1H protein, were investigated against several P. aeruginosa and S. aureus strains, including multidrug-resistant (MDR) isolates. The antibiofilm activity was evaluated on single- and dual-species biofilms of P. aeruginosa and S. aureus. Moreover, the effect of peptide Hs02 on the membrane fluidity of the strains was assessed through Laurdan generalized polarization (GP). Minimum inhibitory concentration (MIC) values of peptide Hs02 ranged from 2 to 16 µg/mL against all strains and MDR isolates. Though Hs02 was not able to hamper biofilm formation by some strains at sub-MIC values, it clearly affected 24 h preformed biofilms, especially by reducing the viability of the bacterial cells within the single- and dual-species biofilms, as shown by confocal laser scanning microscopy (CLSM) and atomic force microscopy (AFM) images. Laurdan GP values showed that Hs02 induces membrane rigidification in both P. aeruginosa and S. aureus. Peptide Hs02 can potentially be a lead for further improvement as an antibiofilm agent.
Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Antibacterianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Meios de Cultura/química , Humanos , Lauratos/química , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimentoRESUMO
The present work reports the isolation, characterization and the complete sequence of a phospholipase A2 (PLA2) present in the skin secretion of Pithecopus azureus. Among several peptides and small proteins previously described by our group from some species belonging to this amphibian genus (formerly named Phyllomedusa), a 15â¯kDa N-glycosylated protein showing PLA2 activity was purified, assayed, sequenced and named Pa-PLA2. The Pithecopus azureus skin phospholipase A2 polypeptide chain is composed by 125 amino acid residues linked by seven disulfide bonds and two N-glycosylated sites (N67 and N108). The Pa-PLA2 enzymatic activity was qualitatively evaluated and compared to classical viperid PLA2 showing that both, native and deglycosylated Pa-PLA2 forms, are catalytically functional. The tridimensional molecular model of Pa-PLA2 indicates that the observed glycan moieties are suggestively placed far from the active site of that enzyme and therefore having little or no significant role on the direct interaction of the Pa-PLA2 catalytic pocket and its substrates.
Assuntos
Anuros , Fosfolipases A2/química , Sequência de Aminoácidos , Animais , Fracionamento Químico , Cromatografia Líquida , Modelos Moleculares , Fosfolipases A2/isolamento & purificação , Análise de Sequência de Proteína , Espectrometria de Massas em TandemRESUMO
HsAFP1, a plant defensin isolated from coral bells (Heuchera sanguinea), is characterized by broad-spectrum antifungal activity. Previous studies indicated that HsAFP1 binds to specific fungal membrane components, which had hitherto not been identified, and induces mitochondrial dysfunction and cell membrane permeabilization. In this study, we show that HsAFP1 reversibly interacts with the membrane phospholipid phosphatidic acid (PA), which is a precursor for the biosynthesis of other phospholipids, and to a lesser extent with various phosphatidyl inositol phosphates (PtdInsP's). Moreover, via reverse ELISA assays we identified two basic amino acids in HsAFP1, namely histidine at position 32 and arginine at position 52, as well as the phosphate group in PA as important features enabling this interaction. Using a HsAFP1 variant, lacking both amino acids (HsAFP1[H32A][R52A]), we showed that, as compared to the native peptide, the ability of this variant to bind to PA and PtdInsP's is reduced (≥74%) and the antifungal activity of the variant is reduced (≥2-fold), highlighting the link between PA/PtdInsP binding and antifungal activity. Using fluorescently labelled HsAFP1 in confocal microscopy and flow cytometry assays, we showed that HsAFP1 accumulates at the cell surface of yeast cells with intact membranes, most notably at the buds and septa. The resulting HsAFP1-induced membrane permeabilization is likely to occur after HsAFP1's internalization. These data provide novel mechanistic insights in the mode of action of the HsAFP1 plant defensin.
RESUMO
Arylpiperazines 2-11 were synthesized, and their biological profiles at α1-adrenergic receptors (α1-ARs) assessed by binding assays in CHO cells expressing human cloned subtypes and by functional experiments in isolated rat vas deferens (α1A), spleen (α1B), and aorta (α1D). Modifications at the 1,3-benzodioxole and phenyl phamacophoric units resulted in the identification of a number of potent compounds (moderately selective with respect to the α1b-AR), in binding experiments. Notably, compound 7 (LDT451) showed a subnanomolar pKi of 9.41 towards α1a-AR. An encouragingly lower α1B-potency was a general trend for all the series of compounds, which showed α1A/D over α1B selectivity in functional assays. If adequately optimized, such peculiar selectivity could have relevance for a potential LUTS/BPH therapeutic application.
Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/síntese química , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Desenho de Fármacos , Piperazinas/síntese química , Piperazinas/farmacologia , Receptores Adrenérgicos alfa 1/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1/química , Antagonistas de Receptores Adrenérgicos alfa 1/metabolismo , Animais , Células CHO , Linhagem Celular Tumoral , Técnicas de Química Sintética , Clonagem Molecular , Cricetinae , Cricetulus , Humanos , Masculino , Simulação de Acoplamento Molecular , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Piperazinas/química , Piperazinas/metabolismo , Conformação Proteica , Ratos , Receptores Adrenérgicos alfa 1/química , Receptores Adrenérgicos alfa 1/genética , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-AtividadeRESUMO
Cardanol is a phenolic lipid component of cashew nut shell liquid (CNSL), obtained as the byproduct of cashew nut food processing. Being a waste product, it has attracted much attention as a precursor for the production of high-value chemicals, including drugs. On the basis of these findings and in connection with our previous studies on cardanol derivatives as acetylcholinesterase (AChE) inhibitors, we designed a novel series of analogues by including a protonable amino moiety belonging to different systems. Properly addressed docking studies suggested that the proposed structural modifications would allow the new molecules to interact with both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE, thus being able to act as dual binding inhibitors. To disclose whether the new molecules showed the desired profile, they were first tested for their cholinesterase inhibitory activity towards EeAChE and eqBuChE. Compound 26, bearing an N-ethyl-N-(2-methoxybenzyl)amine moiety, showed the highest inhibitory activity against EeAChE, with a promising IC50 of 6.6 µM, and a similar inhibition profile of the human isoform (IC50 = 5.7 µM). As another positive feature, most of the derivatives did not show appreciable toxicity against HT-29 cells, up to a concentration of 100 µM, which indicates drug-conform behavior. Also, compound 26 is capable of crossing the blood-brain barrier (BBB), as predicted by a PAMPA-BBB assay. Collectively, the data suggest that the approach to obtain potential anti-Alzheimer drugs from CNSL is worth of further pursuit and development.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Colinesterases/metabolismo , Fenóis/farmacologia , Doença de Alzheimer/enzimologia , Sítios de Ligação/efeitos dos fármacos , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Células HT29 , Humanos , Estrutura Molecular , Fenóis/síntese química , Fenóis/química , Relação Estrutura-AtividadeRESUMO
Antimicrobial peptides (AMPs) from the dermaseptin and phylloseptin families were isolated from the skin secretion of Phyllomedusa nordestina, a recently described amphibian species from Northeastern Brazil. One dermaseptin and three phylloseptins were chosen for solid phase peptide synthesis. The antiprotozoal and antimicrobial activities of the synthetic peptides were determined, as well as their cytotoxicity in mouse peritoneal cells. AMPs are being considered as frameworks for the development of novel drugs inspired by their mechanism of action.
Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Pele/metabolismo , Proteínas de Anfíbios/química , Proteínas de Anfíbios/metabolismo , Proteínas de Anfíbios/farmacologia , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Antiprotozoários/química , Antiprotozoários/farmacologia , Anuros , Macrófagos/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Starting from the premise that a wealth of potentially biologically active peptides may lurk within proteins, we describe here a methodology to identify putative antimicrobial peptides encrypted in protein sequences. Candidate peptides were identified using a new screening procedure based on physicochemical criteria to reveal matching peptides within protein databases. Fifteen such peptides, along with a range of natural antimicrobial peptides, were examined using DSC and CD to characterize their interaction with phospholipid membranes. Principal component analysis of DSC data shows that the investigated peptides group according to their effects on the main phase transition of phospholipid vesicles, and that these effects correlate both to antimicrobial activity and to the changes in peptide secondary structure. Consequently, we have been able to identify novel antimicrobial peptides from larger proteins not hitherto associated with such activity, mimicking endogenous and/or exogenous microorganism enzymatic processing of parent proteins to smaller bioactive molecules. A biotechnological application for this methodology is explored. Soybean (Glycine max) plants, transformed to include a putative antimicrobial protein fragment encoded in its own genome were tested for tolerance against Phakopsora pachyrhizi, the causative agent of the Asian soybean rust. This procedure may represent an inventive alternative to the transgenic technology, since the genetic material to be used belongs to the host organism and not to exogenous sources.
Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Fragmentos de Peptídeos/farmacologia , Proteínas de Plantas/farmacologia , Sequência de Aminoácidos , Antibacterianos/química , Antifúngicos/química , Basidiomycota/efeitos dos fármacos , Varredura Diferencial de Calorimetria , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Análise de Componente Principal , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/efeitos dos fármacos , Análise de Sequência de Proteína , Glycine max/genética , Glycine max/microbiologia , Esporos Fúngicos/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacosRESUMO
DM43 is a circulating dimeric antitoxin isolated from Didelphis aurita, a South American marsupial naturally immune to snake envenomation. This endogenous inhibitor binds non-covalently to jararhagin, the main hemorrhagic metalloproteinase from Bothrops jararaca snake venom, and efficiently neutralizes its toxicity. The aim of this study was to apply mass spectrometry (MS) and surface plasmon resonance (SPR) to improve the molecular characterization of this heterocomplex. The stoichiometry of the interaction was confirmed by nanoelectrospray ionization-quadrupole-time-of-flight MS; from native solution conditions, the complex showed a molecular mass of ~94 kDa, indicating that one molecule of jararhagin (50 kDa) interacts with one monomer of DM43 (43 kDa). Although readily observed in solution, the dimeric structure of the inhibitor was barely preserved in the gas phase. This result suggests that, in contrast to the toxin-antitoxin complex, hydrophobic interactions are the primary driving force for the inhibitor dimerization. For the real-time interaction analysis, the toxin was captured on a sensor chip derivatized with the anti-jararhagin monoclonal antibody MAJar 2. The sensorgrams obtained after successive injections of DM43 in a concentration series were globally fitted to a simple bimolecular interaction, yielding the following kinetic rates for the DM43/jararhagin interaction: k(a) = 3.54 ± 0.03 × 10(4) M(-1) s(-1) and k(d) = 1.16 ± 0.07 × 10(-5) s(-1), resulting in an equilibrium dissociation constant (K(D) ) of 0.33 ± 0.06 nM. Taken together, MS and SPR results show that DM43 binds to its target toxin with high affinity and constitute the first accurate quantitative study on the extent of the interaction between a natural inhibitor and a metalloproteinase toxin, with unequivocal implications for the use of this kind of molecule as template for the rational development of novel antivenom therapies.