RESUMO
Novel species of fungi described in this study include those from various countries as follows: Argentina, Colletotrichum araujiae on leaves, stems and fruits of Araujia hortorum. Australia, Agaricus pateritonsus on soil, Curvularia fraserae on dying leaf of Bothriochloa insculpta, Curvularia millisiae from yellowing leaf tips of Cyperus aromaticus, Marasmius brunneolorobustus on well-rotted wood, Nigrospora cooperae from necrotic leaf of Heteropogon contortus, Penicillium tealii from the body of a dead spider, Pseudocercospora robertsiorum from leaf spots of Senna tora, Talaromyces atkinsoniae from gills of Marasmius crinis-equi and Zasmidium pearceae from leaf spots of Smilaxglyciphylla. Brazil, Preussia bezerrensis from air. Chile, Paraconiothyrium kelleni from the rhizosphere of Fragaria chiloensis subsp. chiloensis f. chiloensis. Finland, Inocybe udicola on soil in mixed forest with Betula pendula, Populus tremula, Picea abies and Alnus incana. France, Myrmecridium normannianum on dead culm of unidentified Poaceae. Germany, Vexillomyces fraxinicola from symptomless stem wood of Fraxinus excelsior. India, Diaporthe limoniae on infected fruit of Limonia acidissima, Didymella naikii on leaves of Cajanus cajan, and Fulvifomes mangroviensis on basal trunk of Aegiceras corniculatum. Indonesia, Penicillium ezekielii from Zea mays kernels. Namibia, Neocamarosporium calicoremae and Neocladosporium calicoremae on stems of Calicorema capitata, and Pleiochaeta adenolobi on symptomatic leaves of Adenolobus pechuelii. Netherlands, Chalara pteridii on stems of Pteridium aquilinum, Neomackenziella juncicola (incl. Neomackenziella gen. nov.) and Sporidesmiella junci from dead culms of Juncus effusus. Pakistan, Inocybe longistipitata on soil in a Quercus forest. Poland, Phytophthora viadrina from rhizosphere soil of Quercus robur, and Septoria krystynae on leaf spots of Viscum album. Portugal (Azores), Acrogenospora stellata on dead wood or bark. South Africa, Phyllactinia greyiae on leaves of Greyia sutherlandii and Punctelia anae on bark of Vachellia karroo. Spain, Anteaglonium lusitanicum on decaying wood of Prunus lusitanica subsp. lusitanica, Hawksworthiomyces riparius from fluvial sediments, Lophiostoma carabassense endophytic in roots of Limbarda crithmoides, and Tuber mohedanoi from calcareus soils. Spain (Canary Islands), Mycena laurisilvae on stumps and woody debris. Sweden, Elaphomyces geminus from soil under Quercus robur. Thailand, Lactifluus chiangraiensis on soil under Pinus merkusii, Lactifluus nakhonphanomensis and Xerocomus sisongkhramensis on soil under Dipterocarpus trees. Ukraine, Valsonectria robiniae on dead twigs of Robinia hispida. USA, Spiralomyces americanus (incl. Spiralomyces gen. nov.) from office air. Morphological and culture characteristics are supported by DNA barcodes. Citation: Tan YP, Bishop-Hurley SL, Shivas RG, et al. 2022. Fungal Planet description sheets: 1436-1477. Persoonia 49: 261-350. https://doi.org/10.3767/persoonia.2022.49.08.
RESUMO
Promoters and signal sequences for expression and secretion of a fungal xylanase encoded by a modified Neocallimastix patriciarum xynA cDNA in the rumen bacterium, Butyrivibrio fibrisolvens OB156, were investigated. Successful expression of the fungal xylanase in OB156 was obtained using the putative xylanase promoter from B. fibrisolvens strain 49. Replacing the putative -35 region sequence (TTGCAC) of the xylanase promoter with the sequence TTGACA by mutagenesis reduced the fungal xylanase expression level 4-fold in OB156, indicating that this B. fibrisolvens strain did not efficiently recognise the E. coli consensus -35 sequence. Reduction of the spacer length between the -35 and -10 regions of the xylanase promoter from 18 to 17 base-pairs (bp) considerably increased the expression levels of the fungal enzyme in both E. coli and OB156. Insertion of a pUB110 mob promoter upstream of the xylanase promoter also significantly improved the fungal xylanase expression. Secretion of the fungal xylanase mediated by the alpha-amylase signal peptide from B. fibrisolvens strain H17c was efficient in E. coli, but very poor in OB156. An increase in the hydrophobicity of the signal sequence resulted in a 4-fold increase in the extracellular portion of the fungal xylanase in OB156, indicating marked improvement in xylanase secretion efficiency. The recombinant plasmids and xylanase expression/secretion cassettes were found to be stable in OB156 after prolonged cultivation (100 generations) in the absence of antibiotic selection. These results suggest that the rumen bacterium B. fibrisolvens can be manipulated to produce and secrete a eukaryotic extracellular protein with stable maintenance of the expression cassette in plasmid form.