Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
2.
Methods Cell Biol ; 185: xvii-xxiv, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556455
3.
Methods Cell Biol ; 176: xvii-xix, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37164545
4.
Methods Cell Biol ; 175: 1-15, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967137

RESUMO

Primary cilia (PC) are sensory organelles that function as cellular antennas, transmitting signals between the extracellular and intracellular spaces in many vertebrate tissues. The cell generates and assembles PC through a highly regulated process called ciliogenesis. This complex process is involved in several physiological functions, including embryonic development, locomotion, cell cycle regulation or energetic homeostasis control. In general, when a cell finishes its cell division, the oldest centriole usually migrates to the plasma membrane and becomes a basal body that gives rise to the formation of a cilium. For this reason, the presence of cilia is incompatible with cell division, so when a cell is going to divide, the cilium and the basal body disappear. Ciliogenesis is triggered by various stimuli, all of them related to cell cycle blockade. This cell cycle, and ciliogenesis induction, can be observed by: (1) the influence of growth factors (lack of serum and consequent inability to promote cell cycle exit and increase the proportion of cells in G0); (2) pharmacological cell cycle inhibitors (staurosporine or etoposide); or (3) physiological cell cycle inhibition (excessive contact between neighboring cells). Evaluation of ciliogenesis induction is vitally important for the study of diseases related to ciliary dysfunction, called ciliopathies. That is why the use of correct protocols for inducing cilia formation and an accurate posterior visualization of the cilia after performing said protocols are essential parts in the study of these diseases. To facilitate this task, here we described detailed protocols to induce ciliogenesis in vitro and visualize PC by immunofluorescence microscopy in cultured cells.


Assuntos
Cílios , Organelas , Cílios/metabolismo , Células Cultivadas , Divisão Celular , Ciclo Celular , Centríolos/fisiologia
5.
Methods Cell Biol ; 175: xv-xviii, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967149

Assuntos
Cílios
6.
Int Rev Cell Mol Biol ; 373: 107-123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36283764

RESUMO

The therapeutic outcome of multiple anticancer regimens relies upon a fine balance between tumor intrinsic and host-related factors. In this context, qualitative changes in dietary composition as well as alterations in total calorie supply influence essential aspects of cancer biology, spanning from tumor initiation to metastatic spreading. On the one hand, circumstances of nutritional imbalance or excessive calorie intake promote oncogenesis, accelerate tumor progression, and hamper the efficacy of anticancer treatments. On the other hand, approaches based on bulk (e.g., fasting, fasting mimicking diets) or selective (e.g., amino acids) shortage of nutrients are currently in the spotlight for their ability to potentiate the effect of anticancer drugs. While the chemosensitizing effect of fasting has long been attributed to the overdemanding metabolic requirements of neoplastic cells, recent findings suggest that caloric restriction improves the efficacy of chemotherapy and immunotherapy by boosting anticancer immunosurveillance. Here, we provide a critical overview of current preclinical and clinical studies that address the impact of nutritional interventions on the response to cancer therapy, laying particular emphasis on fasting-related interventions.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Jejum/fisiologia , Restrição Calórica , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Aminoácidos
7.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897655

RESUMO

A proteomic approach was used to characterize potential mediators involved in the improvement in cardiac fibrosis observed with the administration of the mitochondrial antioxidant MitoQ in obese rats. Male Wistar rats were fed a standard diet (3.5% fat; CT) or a high-fat diet (35% fat; HFD) and treated with vehicle or MitoQ (200 µM) in drinking water for 7 weeks. Obesity modulated the expression of 33 proteins as compared with controls of the more than 1000 proteins identified. These include proteins related to endoplasmic reticulum (ER) stress and oxidative stress. Proteomic analyses revealed that HFD animals presented with an increase in cardiac transthyretin (TTR) protein levels, an effect that was prevented by MitoQ treatment in obese animals. This was confirmed by plasma levels, which were associated with those of cardiac levels of both binding immunoglobulin protein (BiP), a marker of ER stress, and fibrosis. TTR stimulated collagen I production and BiP in cardiac fibroblasts. This upregulation was prevented by the presence of MitoQ. In summary, the results suggest a role of TTR in cardiac fibrosis development associated with obesity and the beneficial effects of treatment with mitochondrial antioxidants.


Assuntos
Pré-Albumina , Ubiquinona , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Dieta Hiperlipídica/efeitos adversos , Fibrose , Masculino , Obesidade/complicações , Obesidade/metabolismo , Estresse Oxidativo , Pré-Albumina/metabolismo , Proteômica , Ratos , Ratos Wistar , Ubiquinona/metabolismo , Ubiquinona/farmacologia
9.
Cell Death Dis ; 13(4): 356, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35436993

RESUMO

Acyl-coenzyme-A-binding protein (ACBP), also known as a diazepam-binding inhibitor (DBI), is a potent stimulator of appetite and lipogenesis. Bioinformatic analyses combined with systematic screens revealed that peroxisome proliferator-activated receptor gamma (PPARγ) is the transcription factor that best explains the ACBP/DBI upregulation in metabolically active organs including the liver and adipose tissue. The PPARγ agonist rosiglitazone-induced ACBP/DBI upregulation, as well as weight gain, that could be prevented by knockout of Acbp/Dbi in mice. Moreover, liver-specific knockdown of Pparg prevented the high-fat diet (HFD)-induced upregulation of circulating ACBP/DBI levels and reduced body weight gain. Conversely, knockout of Acbp/Dbi prevented the HFD-induced upregulation of PPARγ. Notably, a single amino acid substitution (F77I) in the γ2 subunit of gamma-aminobutyric acid A receptor (GABAAR), which abolishes ACBP/DBI binding to this receptor, prevented the HFD-induced weight gain, as well as the HFD-induced upregulation of ACBP/DBI, GABAAR γ2, and PPARγ. Based on these results, we postulate the existence of an obesogenic feedforward loop relying on ACBP/DBI, GABAAR, and PPARγ. Interruption of this vicious cycle, at any level, indistinguishably mitigates HFD-induced weight gain, hepatosteatosis, and hyperglycemia.


Assuntos
Inibidor da Ligação a Diazepam , Receptores de GABA-A , Animais , Proteínas de Transporte , Coenzima A/metabolismo , Inibidor da Ligação a Diazepam/genética , Inibidor da Ligação a Diazepam/metabolismo , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , Receptores de GABA/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Aumento de Peso , Ácido gama-Aminobutírico
10.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408859

RESUMO

Amyloidoses are characterized by the accumulation and aggregation of misfolded proteins into fibrils in different organs, leading to cell death and consequent organ dysfunction. The specific substitution of Leu 75 for Pro in Apolipoprotein A-I protein sequence (ApoA-I; L75P-ApoA-I) results in late onset amyloidosis, where deposition of extracellular protein aggregates damages the normal functions of the liver. In this work, we describe that the autophagic process is inhibited in the presence of the L75P-ApoA-I amyloidogenic variant in stably transfected human hepatocyte carcinoma cells. The L75P-ApoA-I amyloidogenic variant alters the redox status of the cells, resulting into excessive mitochondrial stress and consequent cell death. Moreover, L75P-ApoA-I induces an impairment of the autophagic flux. Pharmacological induction of autophagy or transfection-enforced overexpression of the pro-autophagic transcription factor EB (TFEB) restores proficient proteostasis and reduces oxidative stress in these experimental settings, suggesting that pharmacological stimulation of autophagy could be a promising target to alleviate ApoA-I amyloidosis.


Assuntos
Amiloidose , Amiloidose de Cadeia Leve de Imunoglobulina , Amiloidose/genética , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Autofagia/genética , Humanos , Agregados Proteicos
11.
STAR Protoc ; 3(1): 101095, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35059656

RESUMO

Keyhole limpet hemocyanin (KLH) is a glycosylated multi-subunit metalloprotein that elicits a strong nonspecific immune activation, thus inducing both cellular and humoral immune responses. The exceptional immunogenicity of this protein can be leveraged to vaccinate mice against self-antigens that otherwise would not induce an autoimmune response. This protocol describes the covalent conjugation of KLH with acyl-coenzyme A-binding protein (ACBP), the autovaccination of mice with ACBP-KLH conjugate together with a potent adjuvant, and the detection of the produced anti-ACBP autoantibodies. For complete details on the use and execution of this profile, please refer to Bravo-San Pedro et al. (2019c).


Assuntos
Proteínas de Transporte , Imunização , Animais , Hemocianinas , Camundongos , Peptídeos , Vacinação
12.
Cell Death Dis ; 12(11): 1039, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725331

RESUMO

Pro-apoptotic multi-domain proteins of the BCL2 family such as BAX and BAK are well known for their important role in the induction of mitochondrial outer membrane permeabilization (MOMP), which is the rate-limiting step of the intrinsic pathway of apoptosis. Human or mouse cells lacking both BAX and BAK (due to a double knockout, DKO) are notoriously resistant to MOMP and cell death induction. Here we report the surprising finding that BAX/BAK DKO cells proliferate less than control cells expressing both BAX and BAK (or either BAX or BAK) when they are driven into tetraploidy by transient exposure to the microtubule inhibitor nocodazole. Mechanistically, in contrast to their BAX/BAK-sufficient controls, tetraploid DKO cells activate a senescent program, as indicated by the overexpression of several cyclin-dependent kinase inhibitors and the activation of ß-galactosidase. Moreover, DKO cells manifest alterations in ionomycin-mobilizable endoplasmic reticulum (ER) Ca2+ stores and store-operated Ca2+ entry that are affected by tetraploidization. DKO cells manifested reduced expression of endogenous sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (Serca2a) and transfection-enforced reintroduction of Serca2a, or reintroduction of an ER-targeted variant of BAK into DKO cells reestablished the same pattern of Ca2+ fluxes as observed in BAX/BAK-sufficient control cells. Serca2a reexpression and ER-targeted BAK also abolished the tetraploidy-induced senescence of DKO cells, placing ER Ca2+ fluxes downstream of the regulation of senescence by BAX/BAK. In conclusion, it appears that BAX/BAK prevent the induction of a tetraploidization-associated senescence program. Speculatively, this may contribute to the low incidence of cancers in BAX/BAK DKO mice and explain why human cancers rarely lose the expression of both BAX and BAK.


Assuntos
Tetraploidia , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular , Senescência Celular , Células Clonais , Retículo Endoplasmático/metabolismo , Fibroblastos/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microtúbulos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/deficiência , Proteína X Associada a bcl-2/deficiência
13.
EMBO J ; 40(19): e108863, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34459017

RESUMO

Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.


Assuntos
Autofagia , Suscetibilidade a Doenças , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Autofagia/imunologia , Biomarcadores , Regulação da Expressão Gênica , Predisposição Genética para Doença , Homeostase , Interações Hospedeiro-Patógeno , Humanos , Especificidade de Órgãos , Transdução de Sinais
14.
Methods Cell Biol ; 164: 39-46, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34225917

RESUMO

The activation of autophagy has long been recognized as a central mechanism of healthspan and lifespan regulation at the organismal level, thus spurring major interest in identifying pharmacological or lifestyle interventions able to ignite the autophagic reaction in vivo. Consistently, there is growing need for the implementation in the preclinical practice of an "autophagometer," to be intended as a simple and non-invasive method to measure the autophagic flux in living organisms. Using fasting as the prototypical trigger of autophagy, we describe here a system (based on a leupeptin-based assay and video-flow cytometric detection of LC3B puncta) to quantitate autophagy in circulating leukocytes in mouse. We suggest that this method can be reliably used in the experimental routine to validate the pro-autophagy action of candidate drugs in vivo.


Assuntos
Autofagia , Leucócitos , Animais , Citometria de Fluxo , Camundongos , Proteínas Associadas aos Microtúbulos
15.
Methods Cell Biol ; 165: 111-122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34311860

RESUMO

Acyl-CoA binding protein (ACBP), also called diazepam-binding inhibitor (DBI), is a ubiquitous protein that can be secreted from cells by an unconventional pathway. Depending on its levels and on its subcellular localization, ACBP/DBI can regulate lipid metabolism. Several studies have shown that ACBP/DBI is secreted by an autophagy-dependent mechanism, positioning this catabolic pathway as the mechanism that controls lipid metabolism through the intracellular modulation of the levels of this protein. Autophagy is activated, among other stimuli, when cells have increased energy requirements; this causes a drop in the intracellular ACBP/DBI levels due to its release into the extracellular space and triggers an increase in the lipid catabolism. Conversely, when autophagy is inhibited, during pathological (obesity) or physiological (after-meal) situations, the intracellular levels of ACBP/DBI increase resulting in the activation of lipid anabolism, this effect has been demonstrated to be the link between obesity and autophagy inhibition. Here, we detail three different protocols for the detection of the ACBP/DBI levels by immunofluorescence, image flow cytometry or immunoblot techniques, which allow the quantification of ACBP/DBI levels and, indirectly, its autophagy-dependent release.


Assuntos
Inibidor da Ligação a Diazepam , Obesidade , Autofagia , Inibidor da Ligação a Diazepam/metabolismo , Humanos , Metabolismo dos Lipídeos
16.
Methods Mol Biol ; 2267: 227-239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33786796

RESUMO

Mitotic catastrophe (MC) is a cell death modality induced by DNA damage that involves the activation of cell cycle checkpoints such as the "DNA structure checkpoint" and "spindle assembly checkpoint" (SAC) leading to aberrant mitosis. Depending on the signal, MC can drive the cell to death or to senescence. The suppression of MC favors aneuploidy. Several cancer therapies, included microtubular poisons and radiations, trigger MC. The clonogenic assay has been used to study the capacity of single cells to proliferate and to generate macroscopic colonies and to evaluate the efficacy of anticancer drugs. Nevertheless, this method cannot analyze MC events. Here, we report an improved technique based on the use of human colon cancer HCT116 stable expressing histone H2B-GFP and DsRed-centrin proteins, allowing to determine the capacity of cells to proliferate, and to determine changes in the nucleus and centrosomes.


Assuntos
Morte Celular , Proliferação de Células , Mitose , Ensaio Tumoral de Célula-Tronco/métodos , Antimitóticos/toxicidade , Antineoplásicos/toxicidade , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HCT116 , Histonas/genética , Histonas/metabolismo , Humanos
17.
Antioxidants (Basel) ; 10(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445755

RESUMO

Reactive oxygen species (ROS) operate as key regulators of cellular homeostasis within a physiological range of concentrations, yet they turn into cytotoxic entities when their levels exceed a threshold limit. Accordingly, ROS are an important etiological cue for obesity, which in turn represents a major risk factor for multiple diseases, including diabetes, cardiovascular disorders, non-alcoholic fatty liver disease, and cancer. Therefore, the implementation of novel therapeutic strategies to improve the obese phenotype by targeting oxidative stress is of great interest for the scientific community. To this end, it is of high importance to shed light on the mechanisms through which cells curtail ROS production or limit their toxic effects, in order to harness them in anti-obesity therapy. In this review, we specifically discuss the role of autophagy in redox biology, focusing on its implication in the pathogenesis of obesity. Because autophagy is specifically triggered in response to redox imbalance as a quintessential cytoprotective mechanism, maneuvers based on the activation of autophagy hold promises of efficacy for the prevention and treatment of obesity and obesity-related morbidities.

18.
Adv Drug Deliv Rev ; 169: 40-50, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33301821

RESUMO

Autophagy is quintessential for the maintenance of cellular homeostasis in all eukaryotic cells, explaining why both normal and malignant cells benefit from proficient autophagic responses. Moreover, autophagy is intimately involved in the immunological control of malignant transformation, tumor progression and response to therapy. However, the net effect of autophagy activation or inhibition on the natural growth or therapeutic response of tumors evolving in immunocompetent hosts exhibits a considerable degree of context dependency. Here, we discuss the complex cross-talk between autophagy and immuno-oncology as delineated by genetic and pharmacological approaches in mouse models of cancer.


Assuntos
Autofagia/imunologia , Neoplasias/imunologia , Animais , Carcinogênese , Progressão da Doença , Humanos , Neoplasias/terapia
19.
Nat Commun ; 11(1): 2401, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409639

RESUMO

The molecular connections between homeostatic systems that maintain both genome integrity and proteostasis are poorly understood. Here we identify the selective activation of the unfolded protein response transducer IRE1α under genotoxic stress to modulate repair programs and sustain cell survival. DNA damage engages IRE1α signaling in the absence of an endoplasmic reticulum (ER) stress signature, leading to the exclusive activation of regulated IRE1α-dependent decay (RIDD) without activating its canonical output mediated by the transcription factor XBP1. IRE1α endoribonuclease activity controls the stability of mRNAs involved in the DNA damage response, impacting DNA repair, cell cycle arrest and apoptosis. The activation of the c-Abl kinase by DNA damage triggers the oligomerization of IRE1α to catalyze RIDD. The protective role of IRE1α under genotoxic stress is conserved in fly and mouse. Altogether, our results uncover an important intersection between the molecular pathways that sustain genome stability and proteostasis.


Assuntos
Sobrevivência Celular/genética , Reparo do DNA , Proteínas de Drosophila/metabolismo , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade de RNA/genética , Animais , Dano ao DNA , Proteínas de Drosophila/genética , Drosophila melanogaster , Endorribonucleases/genética , Feminino , Fibroblastos , Instabilidade Genômica , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Multimerização Proteica , Proteínas Serina-Treonina Quinases/genética , Proteostase/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , RNA Mensageiro/metabolismo
20.
Int J Cancer ; 146(1): 10-17, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31396957

RESUMO

In contrast to prior belief, cancer cells require oxidative phosphorylation (OXPHOS) to strive, and exacerbated OXPHOS dependency frequently characterizes cancer stem cells, as well as primary or acquired resistance against chemotherapy or tyrosine kinase inhibitors. A growing arsenal of therapeutic agents is being designed to suppress the transfer of mitochondria from stromal to malignant cells, to interfere with mitochondrial biogenesis, to directly inhibit respiratory chain complexes, or to disrupt mitochondrial function in other ways. For the experimental treatment of cancers, OXPHOS inhibitors can be advantageously combined with tyrosine kinase inhibitors, as well as with other strategies to inhibit glycolysis, thereby causing a lethal energy crisis. Unfortunately, most of the preclinical data arguing in favor of OXPHOS inhibition have been obtained in xenograft models, in which human cancer cells are implanted in immunodeficient mice. Future studies on OXPHOS inhibitors should elaborate optimal treatment schedules and combination regimens that stimulate-or at least are compatible with-anticancer immune responses for long-term tumor control.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Fosforilação Oxidativa , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Antineoplásicos/farmacologia , Carcinogênese , Glicólise , Humanos , Camundongos , Neoplasias/enzimologia , Neoplasias/metabolismo , Biogênese de Organelas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...