Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Free Radic Biol Med ; 222: 579-587, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992394

RESUMO

Hypoxic tumor microenvironments pose a significant challenge in cancer treatment. Hypoxia-activated prodrugs like evofosfamide aim to specifically target and eliminate these resistant cells. However, their effectiveness is often limited by reoxygenation after cell death. We hypothesized that ascorbate's pro-oxidant properties could be harnessed to induce transient hypoxia, enhancing the efficacy of evofosfamide by overcoming reoxygenation. To test this hypothesis, we investigated the sensitivity of MIA Paca-2 and A549 cancer cells to ascorbate in vitro and in vivo. Ascorbate induced a cytotoxic effect at 5 mM that could be alleviated by endogenous administration of catalase, suggesting a role for hydrogen peroxide in its cytotoxic mechanism. In vitro, Seahorse experiments indicated that the generation of hydrogen peroxide consumes oxygen, which is offset at later time points by a reduction in oxygen consumption due to hydrogen peroxide's cytotoxic effect. In vivo, photoacoustic imaging showed pharmacologic ascorbate treatment at sublethal levels triggered a complex, multi-phasic response in tumor oxygenation across both cell lines. Initially, ascorbate generated transient hypoxia within minutes through hydrogen peroxide production, via reactions that consume oxygen. This initial hypoxic phase peaked at around 150 s and then gradually subsided. However, at longer time scales (approximately 300 s) a vasodilation effect triggered by ascorbate resulted in increased blood flow and subsequent reoxygenation. Combining sublethal levels of i. p. Ascorbate with evofosfamide significantly prolonged tumor doubling time in MIA Paca-2 and A549 xenografts compared to either treatment alone. This improvement, however, was only observed in a subpopulation of tumors, highlighting the complexity of the oxygenation response.

2.
Magn Reson Med ; 91(1): 413-423, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37676121

RESUMO

PURPOSE: In this study, we compared two triarylmethyl (TAM) spin probes, Ox071 and Ox063 for their efficacy in measuring tissue oxygen levels under hypoxic and normoxic conditions by R2 *-based EPR oximetry. METHODS: The R2 * dependencies on the spin probe concentration and oxygen level were calibrated using deoxygenated 1, 2, 5, and 10 mM standard solutions and 2 mM solutions saturated at 0%, 2%, 5%, 10%, and 21% of oxygen. For the hypoxic model, in vivo imaging of a MIA PaCa-2 tumor implanted in the hind leg of a mouse was performed on successive days by R2 *-based EPR oximetry using either Ox071 or Ox063. For the normoxic model, renal imaging of healthy athymic mice was performed using both spin probes. The 3D images were reconstructed by single point imaging and multi-gradient technique was used to determine R2 * maps. RESULTS: The signal intensities of Ox071 were approximately three times greater than that of Ox063 in the entire partial pressure of oxygen (pO2 ) range investigated. The histograms of the tumor pO2 images were skewed for both spin probes, and Ox071 showed more frequency counts at pO2 > 32 mm Hg. In the normoxic kidney model, there was a clear delineation between the high pO2 cortex and the low pO2 medulla regions. The histogram of high-resolution kidney oximetry image using Ox071 was nearly symmetrical and frequency counts were seen up to 55 mm Hg, which were missed in Ox063 imaging. CONCLUSION: As an oximetric probe, Ox071 has clear advantages over Ox063 in terms of sensitivity and the pO2 dynamic range.


Assuntos
Neoplasias , Oximetria , Camundongos , Animais , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Oximetria/métodos , Oxigênio , Imageamento Tridimensional
3.
Sci Rep ; 13(1): 14699, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679461

RESUMO

In vivo deuterated water (2H2O) labeling leads to deuterium (2H) incorporation into biomolecules of proliferating cells and provides the basis for its use in cell kinetics research. We hypothesized that rapidly proliferating cancer cells would become preferentially labeled with 2H and, therefore, could be visualized by deuterium magnetic resonance imaging (dMRI) following a brief period of in vivo systemic 2H2O administration. We initiated systemic 2H2O administration in two xenograft mouse models harboring either human colorectal, HT-29, or pancreatic, MiaPaCa-2, tumors and 2H2O level of ~ 8% in total body water (TBW). Three schemas of 2H2O administration were tested: (1) starting at tumor seeding and continuing for 7 days of in vivo growth with imaging on day 7, (2) starting at tumor seeding and continuing for 14 days of in vivo growth with imaging on day 14, and (3) initiation of labeling following a week of in vivo tumor growth and continuing until imaging was performed on day 14. Deuterium chemical shift imaging of the tumor bearing limb and contralateral control was performed on either day 7 of 14 after tumor seeding, as described. After 14 days of in vivo tumor growth and 7 days of systemic labeling with 2H2O, a clear deuterium contrast was demonstrated between the xenografts and normal tissue. Labeling in the second week after tumor implantation afforded the highest contrast between neoplastic and healthy tissue in both models. Systemic labeling with 2H2O can be used to create imaging contrast between tumor and healthy issue, providing a non-radioactive method for in vivo cancer imaging.


Assuntos
Imageamento por Ressonância Magnética , Inoculação de Neoplasia , Humanos , Animais , Camundongos , Xenoenxertos , Deutério , Transplante Heterólogo , Administração Cutânea , Modelos Animais de Doenças
4.
Antioxid Redox Signal ; 39(7-9): 432-444, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37051681

RESUMO

Aims: Pancreatic ductal adenocarcinomas (PDACs) form hypovascular and hypoxic tumors, which are difficult to treat with current chemotherapy regimens. Gemcitabine (GEM) is often used as a first-line treatment for PDACs but has issues with chemoresistance and penetration in the interior of the tumor. Evofosfamide, a hypoxia-activated prodrug, has been shown to be effective in combination with GEM, although the mechanism of each drug on the other has not been established. We used mouse xenografts from two cell lines (MIA Paca-2 and SU.86.86) with different tumor microenvironmental characteristics to probe the action of each drug on the other. Results: GEM treatment enhanced survival times in mice with SU.86.86 leg xenografts (hazard ratio [HR] = 0.35, p = 0.03) but had no effect on MIA Paca-2 mice (HR = 0.91, 95% confidence interval = 0.37-2.25, p = 0.84). Conversely, evofosfamide did not improve survival times in SU.86.86 mice to a statistically significant degree (HR = 0.57, p = 0.22). Electron paramagnetic resonance imaging showed that oxygenation worsened in MIA Paca-2 tumors when treated with GEM, providing a direct mechanism for the activation of the hypoxia-activated prodrug evofosfamide by GEM. Sublethal amounts of either treatment enhanced the toxicity of other treatment in vitro in SU.86.86 but not in MIA Paca-2. By the biomarker γH2AX, combination treatment increased the number of double-stranded DNA lesions in vitro for SU.86.86 but not MIA Paca-2. Innovation and Conclusion: The synergy between GEM and evofosfamide appears to stem from the dual action of GEMs effect on tumor vasculature and inhibition by GEM of the homologous recombination DNA repair process. Antioxid. Redox Signal. 39, 432-444.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pró-Fármacos , Humanos , Animais , Camundongos , Gencitabina , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Xenoenxertos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Reparo de DNA por Recombinação , Linhagem Celular Tumoral , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Hipóxia/tratamento farmacológico , Neoplasias Pancreáticas
6.
Antioxid Redox Signal ; 36(1-3): 144-159, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34428981

RESUMO

Significance: Oxygen imaging techniques, which can probe the spatiotemporal heterogeneity of tumor oxygenation, could be of significant clinical utility in radiation treatment planning and in evaluating the effectiveness of hypoxia-activated prodrugs. To fulfill these goals, oxygen imaging techniques should be noninvasive, quantitative, and capable of serial imaging, as well as having sufficient temporal resolution to detect the dynamics of tumor oxygenation to distinguish regions of chronic and acute hypoxia. Recent Advances: No current technique meets all these requirements, although all have strengths in certain areas. The current status of positron emission tomography (PET)-based hypoxia imaging, oxygen-enhanced magnetic resonance imaging (MRI), 19F MRI, and electron paramagnetic resonance (EPR) oximetry are reviewed along with their strengths and weaknesses for planning hypoxia-guided, intensity-modulated radiation therapy and detecting treatment response for hypoxia-targeted prodrugs. Critical Issues: Spatial and temporal resolution emerges as a major concern for these areas along with specificity and quantitative response. Although multiple oxygen imaging techniques have reached the investigative stage, clinical trials to test the therapeutic effectiveness of hypoxia imaging have been limited. Future Directions: Imaging elements of the redox environment besides oxygen by EPR and hyperpolarized MRI may have a significant impact on our understanding of the basic biology of the reactive oxygen species response and may extend treatment possibilities.


Assuntos
Hipóxia , Tomografia por Emissão de Pósitrons , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Oxigênio
7.
ACS Chem Biol ; 16(11): 2144-2150, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34554724

RESUMO

Alpha-ketoglutarate (α-KG) is a key metabolite and signaling molecule in cancer cells, but the low permeability of α-KG limits the study of α-KG mediated effects in vivo. Recently, cell-permeable monoester and diester α-KG derivatives have been synthesized for use in vivo, but many of these derivatives are not compatible for use in hyperpolarized carbon-13 nuclear magnetic resonance spectroscopy (HP-13C-MRS). HP-13C-MRS is a powerful technique that has been used to noninvasively trace labeled metabolites in real time. Here, we show that using diethyl-[1-13C]-α-KG as a probe in HP-13C-MRS allows for noninvasive tracing of α-KG metabolism in vivo.


Assuntos
Membrana Celular/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Ácidos Cetoglutáricos/metabolismo , Animais , Transporte Biológico , Isótopos de Carbono , Linhagem Celular Tumoral , Ácido Glutâmico/genética , Glutamina/genética , Células HCT116 , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais , Permeabilidade
8.
NMR Biomed ; 34(11): e4588, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34263489

RESUMO

Isocitrate dehydrogenase 1 (IDH1) mutations that generate the oncometabolite 2-hydroxyglutarate (2-HG) from α-ketoglutarate (α-KG) have been identified in many types of tumors and are an important prognostic factor in gliomas. 2-HG production can be determined by hyperpolarized carbon-13 magnetic resonance spectroscopy (HP-13 C-MRS) using [1-13 C]-α-KG as a probe, but peak contamination from naturally occurring [5-13 C]-α-KG overlaps with the [1-13 C]-2-HG peak. Via a newly developed oxidative-Stetter reaction, [1-13 C-5-12 C]-α-KG was synthesized. α-KG metabolism was measured via HP-13 C-MRS using [1-13 C-5-12 C]-α-KG as a probe. [1-13 C-5-12 C]-α-KG was synthesized in high yields, and successfully eliminated the signal from C5 of α-KG in the HP-13 C-MRS spectra. In HCT116 IDH1 R132H cells, [1-13 C-5-12 C]-α-KG allowed for unimpeded detection of [1-13 C]-2-HG. 12 C-enrichment represents a novel method to circumvent spectral overlap, and [1-13 C-5-12 C]-α-KG shows promise as a probe to study IDH1 mutant tumors and α-KG metabolism.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Glutaratos/análise , Ácidos Cetoglutáricos/metabolismo , Células HCT116 , Humanos
9.
Int J Mol Sci ; 22(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063570

RESUMO

Understanding the global metabolic changes during the senescence of tumor cells can have implications for developing effective anti-cancer treatment strategies. Ionizing radiation (IR) was used to induce senescence in a human colon cancer cell line HCT-116 to examine secretome and metabolome profiles. Control proliferating and senescent cancer cells (SCC) exhibited distinct morphological differences and expression of senescent markers. Enhanced secretion of pro-inflammatory chemokines and IL-1, anti-inflammatory IL-27, and TGF-ß1 was observed in SCC. Significantly reduced levels of VEGF-A indicated anti-angiogenic activities of SCC. Elevated levels of tissue inhibitors of matrix metalloproteinases from SCC support the maintenance of the extracellular matrix. Adenylate and guanylate energy charge levels and redox components NAD and NADP and glutathione were maintained at near optimal levels indicating the viability of SCC. Significant accumulation of pyruvate, lactate, and suppression of the TCA cycle in SCC indicated aerobic glycolysis as the predominant energy source for SCC. Levels of several key amino acids decreased significantly, suggesting augmented utilization for protein synthesis and for use as intermediates for energy metabolism in SCC. These observations may provide a better understanding of cellular senescence basic mechanisms in tumor tissues and provide opportunities to improve cancer treatment.


Assuntos
Senescência Celular/genética , Neoplasias do Colo/genética , Redes e Vias Metabólicas/genética , Metaboloma/genética , Senescência Celular/efeitos da radiação , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células HCT116 , Humanos , Interleucina-1/genética , Interleucina-27/genética , Redes e Vias Metabólicas/efeitos da radiação , Metaboloma/efeitos da radiação , Radiação Ionizante , Fator de Crescimento Transformador beta1/genética , Fator A de Crescimento do Endotélio Vascular/genética
10.
Sci Rep ; 11(1): 12155, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108512

RESUMO

Drastic sensitivity enhancement of dynamic nuclear polarization is becoming an increasingly critical methodology to monitor real-time metabolic and physiological information in chemistry, biochemistry, and biomedicine. However, the limited number of available hyperpolarized 13C probes, which can effectively interrogate crucial metabolic activities, remains one of the major bottlenecks in this growing field. Here, we demonstrate [1-13C] N-acetyl cysteine (NAC) as a novel probe for hyperpolarized 13C MRI to monitor glutathione redox chemistry, which plays a central part of metabolic chemistry and strongly influences various therapies. NAC forms a disulfide bond in the presence of reduced glutathione, which generates a spectroscopically detectable product that is separated from the main peak by a 1.5 ppm shift. In vivo hyperpolarized MRI in mice revealed that NAC was broadly distributed throughout the body including the brain. Its biochemical transformation in two human pancreatic tumor cells in vitro and as xenografts differed depending on the individual cellular biochemical profile and microenvironment in vivo. Hyperpolarized NAC can be a promising non-invasive biomarker to monitor in vivo redox status and can be potentially translatable to clinical diagnosis.


Assuntos
Acetilcisteína/metabolismo , Encéfalo/metabolismo , Isótopos de Carbono/análise , Glutationa/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Apoptose , Proliferação de Células , Humanos , Imageamento por Ressonância Magnética , Camundongos , Oxirredução , Neoplasias Pancreáticas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Magn Reson Med ; 86(5): 2497-2511, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34173268

RESUMO

PURPOSE: To improve hyperpolarized 13 C (HP-13 C) MRI by image denoising with a new approach, patch-based higher-order singular value decomposition (HOSVD). METHODS: The benefit of using a patch-based HOSVD method to denoise dynamic HP-13 C MR imaging data was investigated. Image quality and the accuracy of quantitative analyses following denoising were evaluated first using simulated data of [1-13 C]pyruvate and its metabolic product, [1-13 C]lactate, and compared the results to a global HOSVD method. The patch-based HOSVD method was then applied to healthy volunteer HP [1-13 C]pyruvate EPI studies. Voxel-wise kinetic modeling was performed on both non-denoised and denoised data to compare the number of voxels quantifiable based on SNR criteria and fitting error. RESULTS: Simulation results demonstrated an 8-fold increase in the calculated SNR of [1-13 C]pyruvate and [1-13 C]lactate with the patch-based HOSVD denoising. The voxel-wise quantification of kPL (pyruvate-to-lactate conversion rate) showed a 9-fold decrease in standard errors for the fitted kPL after denoising. The patch-based denoising performed superior to the global denoising in recovering kPL information. In volunteer data sets, [1-13 C]lactate and [13 C]bicarbonate signals became distinguishable from noise across captured time points with over a 5-fold apparent SNR gain. This resulted in >3-fold increase in the number of voxels quantifiable for mapping kPB (pyruvate-to-bicarbonate conversion rate) and whole brain coverage for mapping kPL . CONCLUSIONS: Sensitivity enhancement provided by this denoising significantly improved quantification of metabolite dynamics and could benefit future studies by improving image quality, enabling higher spatial resolution, and facilitating the extraction of metabolic information for clinical research.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Simulação por Computador , Humanos , Ácido Láctico , Ácido Pirúvico , Razão Sinal-Ruído
12.
NMR Biomed ; 34(7): e4514, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33939204

RESUMO

Dynamic nuclear polarization (DNP) of 13 C-labeled substrates enables the use of magnetic resonance imaging (MRI) to monitor specific enzymatic reactions in tumors and offers an opportunity to investigate these differences. In this study, DNP-MRI chemical shift imaging with hyperpolarized [1-13 C] pyruvate was conducted to evaluate the metabolic change in glycolytic profiles after radiation of two glioma stem-like cell-derived gliomas (GBMJ1 and NSC11) and an adherent human glioblastoma cell line (U251) in an orthotopic xenograft mouse model. The DNP-MRI showed an increase in Lac/Pyr at 6 and 16 h after irradiation (18% ± 4% and 14% ± 3%, respectively; mean ± SEM) compared with unirradiated controls in GBMJ1 tumors, whereas no significant change was observed in U251 and NSC11 tumors. Metabolomic analysis likewise showed a significant increase in lactate in GBMJ1 tumors at 16 h. An immunoblot assay showed upregulation of lactate dehydrogenase-A expression in GBMJ1 following radiation exposure, consistent with DNP-MRI and metabolomic analysis. In conclusion, our preclinical study demonstrates that the DNP-MRI technique has the potential to be a powerful diagnostic method with which to evaluate GBM tumor metabolism before and after radiation in the clinical setting.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Animais , Linhagem Celular Tumoral , Glioblastoma/diagnóstico por imagem , Humanos , Lactato Desidrogenase 5/metabolismo , Ácido Láctico/metabolismo , Imageamento por Ressonância Magnética , Metabolômica , Camundongos Nus , Ácido Pirúvico/metabolismo
13.
Cancer Res ; 81(13): 3693-3705, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33837042

RESUMO

Immune checkpoint blockade (ICB) has become a standard therapy for several cancers, however, the response to ICB is inconsistent and a method for noninvasive assessment has not been established to date. To investigate the capability of multimodal imaging to evaluate treatment response to ICB therapy, hyperpolarized 13C MRI using [1-13C] pyruvate and [1,4-13C2] fumarate and dynamic contrast enhanced (DCE) MRI was evaluated to detect early changes in tumor glycolysis, necrosis, and intratumor perfusion/permeability, respectively. Mouse tumor models served as platforms for high (MC38 colon adenocarcinoma) and low (B16-F10 melanoma) sensitivity to dual ICB of PD-L1 and CTLA4. Glycolytic flux significantly decreased following treatment only in the less sensitive B16-F10 tumors. Imaging [1,4-13C2] fumarate conversion to [1,4-13C2] malate showed a significant increase in necrotic cell death following treatment in the ICB-sensitive MC38 tumors, with essentially no change in B16-F10 tumors. DCE-MRI showed significantly increased perfusion/permeability in MC38-treated tumors, whereas a similar, but statistically nonsignificant, trend was observed in B16-F10 tumors. When tumor volume was also taken into consideration, each imaging biomarker was linearly correlated with future survival in both models. These results suggest that hyperpolarized 13C MRI and DCE MRI may serve as useful noninvasive imaging markers to detect early response to ICB therapy. SIGNIFICANCE: Hyperpolarized 13C MRI and dynamic contrast enhanced MRI in murine tumor models provide useful insight into evaluating early response to immune checkpoint blockade therapy.See related commentary by Cullen and Keshari, p. 3444.


Assuntos
Neoplasias do Colo/patologia , Glicólise , Inibidores de Checkpoint Imunológico/farmacologia , Imageamento por Ressonância Magnética/métodos , Melanoma Experimental/patologia , Imagem Molecular/métodos , Ácido Pirúvico/metabolismo , Animais , Apoptose , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Feminino , Humanos , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Acad Radiol ; 28(2): 199-207, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32143993

RESUMO

RATIONALE AND OBJECTIVE: The Prostate Imaging Reporting and Data System version 2 (PI-RADSv2) published a set of minimum technical standards (MTS) to improve image quality and reduce variability in multiparametric prostate MRI. The effect of PIRADSv2 MTS on image quality has not been validated. We aimed to determine whether adherence to PI-RADSv2 MTS improves study adequacy and perceived quality. MATERIALS AND METHODS: Sixty-two prostate MRI examinations including T2 weighted (T2W) and diffusion weighted image (DWI) consecutively referred to our center from 62 different institutions within a 12-month period (September 2017 to September 2018) were included. Six readers assessed images as adequate or inadequate for use in PCa detection and a numerical image quality ranking was given using a 1-5 scale. The PI-RADSv2 MTS were synthesized into sets of seven and 10 rules for T2W and DWI, respectively. Image adherence was assessed using Digital Imaging and Communications in Medicine (DICOM) metadata. Statistical analysis of survey results and image adherence was performed based on reader quality scoring (Kendall Rank tau-b) and reader adequate scoring (Wilcoxon test for association) for T2 and DWI quality assessment. RESULTS: Out of 62 images, 52 (83%) T2W and 38 (61%) DWIs were rated to be adequate by a majority of readers. Reader adequacy scores showed no significant association with adherence to PI-RADSv2. There was a weak (tau-b = 0.22) but significant (p value = 0.01) correlation between adherence to PIRADSv2 MTS and image quality for T2W. Studies following all PI-RADSv2 T2W rules achieved a higher median average quality score (3.58 for 7/7 vs. 3.0 for <7/7, p = 0.012). No statistical relationship with PI-RADSv2 MTS adherence and DWI quality was found. CONCLUSION: Among 62 sites performing prostate MRI, few were considered of high quality, but the majority were considered adequate. DWI showed considerably lower rates of adequate studies in the sample. Adherence to PI-RADSv2 MTS did not increase the likelihood of having a qualitatively adequate T2W or DWI.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias da Próstata , Imagem de Difusão por Ressonância Magnética , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Padrões de Referência , Estudos Retrospectivos
15.
Antioxid Redox Signal ; 35(11): 904-915, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-32787454

RESUMO

Aims: In hypoxic tumor microenvironments, the strongly reducing redox environment reduces evofosfamide (TH-302) to release a cytotoxic bromo-isophosphoramide (Br-IPM) moiety. This drug therefore preferentially attacks hypoxic regions in tumors where other standard anticancer treatments such as chemotherapy and radiation therapy are often ineffective. Various combination therapies with evofosfamide have been proposed and tested in preclinical and clinical settings. However, the treatment effect of evofosfamide monotherapy on tumor hypoxia has not been fully understood, partly due to the lack of quantitative methods to assess tumor pO2in vivo. Here, we use quantitative pO2 imaging by electron paramagnetic resonance (EPR) to evaluate the change in tumor hypoxia in response to evofosfamide treatment using two pancreatic ductal adenocarcinoma xenograft models: MIA Paca-2 tumors responding to evofosfamide and Su.86.86 tumors that do not respond. Results: EPR imaging showed that oxygenation improved globally after evofosfamide treatment in hypoxic MIA Paca-2 tumors, in agreement with the ex vivo results obtained from hypoxia staining by pimonidazole and in apparent contrast to the decrease in Ktrans observed in dynamic contrast-enhanced magnetic resonance imaging (DCE MRI). Innovations: The observation that evofosfamide not only kills the hypoxic region of the tumor but also improves oxygenation in the residual tumor regions provides a rationale for combination therapies using radiation and antiproliferatives post evofosfamide for improved outcomes. Conclusion: This study suggests that reoxygenation after evofosfamide treatment is due to decreased oxygen demand rather than improved perfusion. Following the change in pO2 after treatment may therefore yield a way of monitoring treatment response. Antioxid. Redox Signal. 35, 904-915.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/terapia , Hipóxia Celular/efeitos dos fármacos , Nitroimidazóis/farmacologia , Neoplasias Pancreáticas/terapia , Mostardas de Fosforamida/farmacologia , Pró-Fármacos/farmacologia , Animais , Antineoplásicos/química , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Nitroimidazóis/química , Oxirredução , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Mostardas de Fosforamida/química , Pró-Fármacos/química
16.
Magn Reson Med ; 85(1): 42-48, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32697878

RESUMO

PURPOSE: In dynamic nuclear polarization (DNP), the solution needs to form a glass to attain significant levels of polarization in reasonable time periods. Molecules that do not form glasses by themselves are often mixed with glass forming excipients. Although glassing agents are often essential in DNP studies, they have the potential to perturb the metabolic measurements that are being studied. Glycerol, the glassing agent of choice for in vivo DNP studies, is effective in reducing ice crystal formation during freezing, but is rapidly metabolized, potentially altering the redox and adenosine triphosphate balance of the system. METHODS: DNP buildup curves of 13 C urea and alanine with OX063 in the presence of trehalose, glycerol, and other polyol excipients were measured as a function of concentration. T1 and Tm relaxation times for OX063 in the presence of trehalose were measured by EPR. RESULTS: Approximately 15-20 wt% trehalose gives a glass that polarizes samples more rapidly than the commonly used 60%-wt formulation of glycerol and yields similar polarization levels within clinically relevant timeframes. CONCLUSIONS: Trehalose may be an attractive biologically inert alternative to glycerol for situations where there may be concerns about glycerol's glucogenic potential and possible alteration of the adenosine triphosphate/adenosine diphosphate and redox balance.


Assuntos
Glicerol , Compostos Heterocíclicos , Trealose , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
17.
Proteins ; 88(12): 1648-1659, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32683793

RESUMO

Insulin has long been served as a model for protein aggregation, both due to the importance of aggregation in the manufacture of insulin and because the structural biology of insulin has been extensively characterized. Despite intensive study, details about the initial triggers for aggregation have remained elusive at the molecular level. We show here that at acidic pH, the aggregation of insulin is likely initiated by a partially folded monomeric intermediate. High-resolution structures of the partially folded intermediate show that it is coarsely similar to the initial monomeric structure but differs in subtle details-the A chain helices on the receptor interface are more disordered and the B chain helix is displaced from the C-terminal A chain helix when compared to the stable monomer. The result of these movements is the creation of a hydrophobic cavity in the center of the protein that may serve as nucleation site for oligomer formation. Knowledge of this transition may aid in the engineering of insulin variants that retain the favorable pharamacokinetic properties of monomeric insulin but are more resistant to aggregation.


Assuntos
Insulina/química , Pâncreas/metabolismo , Dobramento de Proteína , Multimerização Proteica , Animais , Bovinos , Interações Hidrofóbicas e Hidrofílicas , Insulina/metabolismo , Modelos Moleculares , Conformação Proteica
18.
Magn Reson Med ; 84(6): 3351-3365, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32501614

RESUMO

PURPOSE: With the initiation of human hyperpolarized 13 C (HP-13 C) trials at multiple sites and the development of improved acquisition methods, there is an imminent need to maximally extract diagnostic information to facilitate clinical interpretation. This study aims to improve human HP-13 C MR spectroscopic imaging through means of Tensor Rank truncation-Image enhancement (TRI) and optimal receiver combination (ORC). METHODS: A data-driven processing framework for dynamic HP 13 C MR spectroscopic imaging (MRSI) was developed. Using patient data sets acquired with both multichannel arrays and single-element receivers from the brain, abdomen, and pelvis, we examined the theory and application of TRI, as well as 2 ORC techniques: whitened singular value decomposition (WSVD) and first-point phasing. Optimal conditions for TRI were derived based on bias-variance trade-off. RESULTS: TRI and ORC techniques together provided a 63-fold mean apparent signal-to-noise ratio (aSNR) gain for receiver arrays and a 31-fold gain for single-element configurations, which particularly improved quantification of the lower-SNR-[13 C]bicarbonate and [1-13 C]alanine signals that were otherwise not detectable in many cases. Substantial SNR enhancements were observed for data sets that were acquired even with suboptimal experimental conditions, including delayed (114 s) injection (8× aSNR gain solely by TRI), or from challenging anatomy or geometry, as in the case of a pediatric patient with brainstem tumor (597× using combined TRI and WSVD). Improved correlation between elevated pyruvate-to-lactate conversion, biopsy-confirmed cancer, and mp-MRI lesions demonstrated that TRI recovered quantitative diagnostic information. CONCLUSION: Overall, this combined approach was effective across imaging targets and receiver configurations and could greatly benefit ongoing and future HP 13 C MRI research through major aSNR improvements.


Assuntos
Aumento da Imagem , Imageamento por Ressonância Magnética , Isótopos de Carbono , Criança , Humanos , Espectroscopia de Ressonância Magnética , Ácido Pirúvico , Razão Sinal-Ruído
19.
Cancer Res ; 80(11): 2087-2093, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32245793

RESUMO

Molecular imaging approaches for metabolic and physiologic imaging of tumors have become important for treatment planning and response monitoring. However, the relationship between the physiologic and metabolic aspects of tumors is not fully understood. Here, we developed new hyperpolarized MRI and electron paramagnetic resonance imaging procedures that allow more direct assessment of tumor glycolysis and oxygenation status quantitatively. We investigated the spatial relationship between hypoxia, glucose uptake, and glycolysis in three human pancreatic ductal adenocarcinoma tumor xenografts with differing physiologic and metabolic characteristics. At the bulk tumor level, there was a strong positive correlation between 18F-FDG-PET and lactate production, while pO2 was inversely related to lactate production and 18F-2-fluoro-2-deoxy-D-glucose (18F-FDG) uptake. However, metabolism was not uniform throughout the tumors, and the whole tumor results masked different localizations that became apparent while imaging. 18F-FDG uptake negatively correlated with pO2 in the center of the tumor and positively correlated with pO2 on the periphery. In contrast to pO2 and 18F-FDG uptake, lactate dehydrogenase activity was distributed relatively evenly throughout the tumor. The heterogeneity revealed by each measure suggests a multimodal molecular imaging approach can improve tumor characterization, potentially leading to better prognostics in cancer treatment. SIGNIFICANCE: Novel multimodal molecular imaging techniques reveal the potential of three interrelated imaging biomarkers to profile the tumor microenvironment and interrelationships of hypoxia, glucose uptake, and glycolysis.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Glucose/metabolismo , Oxigênio/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/diagnóstico por imagem , Linhagem Celular Tumoral , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Fluordesoxiglucose F18 , Glicólise , Xenoenxertos , Humanos , Camundongos , Imagem Molecular/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Pressão Parcial , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Microambiente Tumoral
20.
Cell Rep ; 30(6): 1798-1810.e4, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32049011

RESUMO

The reliance of many cancers on aerobic glycolysis has stimulated efforts to develop lactate dehydrogenase (LDH) inhibitors. However, despite significant efforts, LDH inhibitors (LDHi) with sufficient specificity and in vivo activity to determine whether LDH is a feasible drug target are lacking. We describe an LDHi with potent, on-target, in vivo activity. Using hyperpolarized magnetic resonance spectroscopic imaging (HP-MRSI), we demonstrate in vivo LDH inhibition in two glycolytic cancer models, MIA PaCa-2 and HT29, and we correlate depth and duration of LDH inhibition with direct anti-tumor activity. HP-MRSI also reveals a metabolic rewiring that occurs in vivo within 30 min of LDH inhibition, wherein pyruvate in a tumor is redirected toward mitochondrial metabolism. Using HP-MRSI, we show that inhibition of mitochondrial complex 1 rapidly redirects tumor pyruvate toward lactate. Inhibition of both mitochondrial complex 1 and LDH suppresses metabolic plasticity, causing metabolic quiescence in vitro and tumor growth inhibition in vivo.


Assuntos
Quimioterapia Combinada/métodos , L-Lactato Desidrogenase/antagonistas & inibidores , Neoplasias/imunologia , Animais , Humanos , Camundongos , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...