Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 13(3): e12417, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38499475

RESUMO

Small extracellular vesicles (sEVs) released by acute myeloid leukaemia (AML) cells have been reported to influence the trilineage differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs). However, it remains elusive which biological cargo from AML-sEVs is responsible for this effect. In this study, sEVs were isolated from cell-conditioned media and blood plasma using size-exclusion chromatography and ultrafiltration and characterized according to MISEV2018 guidelines. Our results demonstrated that AML-sEVs increased the proliferation of BM-MSCs. Conversely, key proteins that are important for normal haematopoiesis were downregulated in BM-MSCs. Additionally, we revealed that AML-sEVs significantly reduced the differentiation of BM-MSCs to osteoblasts without affecting adipogenic or chondrogenic differentiation. Next, LC-MS/MS proteomics elucidated that various proteins, including Y-box-binding protein 1 (YBX1), were upregulated in both AML-sEVs and BM-MSCs treated with AML-sEVs. Clinically relevant, we found that YBX1 is considerably upregulated in most paediatric AML patient-derived sEVs compared to healthy controls. Interestingly, sEVs isolated after the downregulation of YBX1 in AML cells remarkably rescued the osteoblastic differentiation of BM-MSCs. Altogether, our data demonstrate for the first time that YBX1 containing AML-sEVs is one of the key players that disrupt the normal function of bone marrow microenvironment by reducing the osteogenic differentiation of BM-MSCs.


Assuntos
Vesículas Extracelulares , Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Criança , Humanos , Cromatografia Líquida , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoblastos , Osteogênese , Espectrometria de Massas em Tandem , Microambiente Tumoral , Proteína 1 de Ligação a Y-Box/metabolismo
2.
J Immunother Cancer ; 11(4)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37028818

RESUMO

BACKGROUND: Immune responses against tumors are subject to negative feedback regulation. Immune checkpoint inhibitors (ICIs) blocking Programmed cell death protein 1 (PD-1), a receptor expressed on T cells, or its ligand PD-L1 have significantly improved the treatment of cancer, in particular malignant melanoma. Nevertheless, responses and durability are variables, suggesting that additional critical negative feedback mechanisms exist and need to be targeted to improve therapeutic efficacy. METHODS: We used different syngeneic melanoma mouse models and performed PD-1 blockade to identify novel mechanisms of negative immune regulation. Genetic gain-of-function and loss-of-function approaches as well as small molecule inhibitor applications were used for target validation in our melanoma models. We analyzed mouse melanoma tissues from treated and untreated mice by RNA-seq, immunofluorescence and flow cytometry to detect changes in pathway activities and immune cell composition of the tumor microenvironment. We analyzed tissue sections of patients with melanoma by immunohistochemistry as well as publicly available single-cell RNA-seq data and correlated target expression with clinical responses to ICIs. RESULTS: Here, we identified 11-beta-hydroxysteroid dehydrogenase-1 (HSD11B1), an enzyme that converts inert glucocorticoids into active forms in tissues, as negative feedback mechanism in response to T cell immunotherapies. Glucocorticoids are potent suppressors of immune responses. HSD11B1 was expressed in different cellular compartments of melanomas, most notably myeloid cells but also T cells and melanoma cells. Enforced expression of HSD11B1 in mouse melanomas limited the efficacy of PD-1 blockade, whereas small molecule HSD11B1 inhibitors improved responses in a CD8+ T cell-dependent manner. Mechanistically, HSD11B1 inhibition in combination with PD-1 blockade augmented the production of interferon-γ by T cells. Interferon pathway activation correlated with sensitivity to PD-1 blockade linked to anti-proliferative effects on melanoma cells. Furthermore, high levels of HSD11B1, predominantly expressed by tumor-associated macrophages, were associated with poor responses to ICI therapy in two independent cohorts of patients with advanced melanomas analyzed by different methods (scRNA-seq, immunohistochemistry). CONCLUSION: As HSD11B1 inhibitors are in the focus of drug development for metabolic diseases, our data suggest a drug repurposing strategy combining HSD11B1 inhibitors with ICIs to improve melanoma immunotherapy. Furthermore, our work also delineated potential caveats emphasizing the need for careful patient stratification.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Glucocorticoides , Imunoterapia , Melanoma , Animais , Camundongos , Linfócitos T CD8-Positivos , Glucocorticoides/uso terapêutico , Interferon gama/metabolismo , Melanoma/tratamento farmacológico , Melanoma/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Microambiente Tumoral , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Reposicionamento de Medicamentos
3.
Cancers (Basel) ; 14(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35565197

RESUMO

Small extracellular vesicles (sEVs) play essential roles in intercellular signaling both in normal and pathophysiological conditions. Comprehensive studies of dsDNA associated with sEVs are hampered by a lack of methods, allowing efficient separation of sEVs from free-circulating DNA and apoptotic bodies. In this work, using controlled culture conditions, we enriched the reproducible separation of sEVs from free-circulated components by combining tangential flow filtration, size-exclusion chromatography, and ultrafiltration (TSU). EV-enriched fractions (F2 and F3) obtained using TSU also contained more dsDNA derived from the host genome and mitochondria, predominantly localized inside the vesicles. Three-dimensional reconstruction of high-resolution imaging showed that the recipient cell membrane barrier restricts a portion of EV-DNA. Simultaneously, the remaining EV-DNA overcomes it and enters the cytoplasm and nucleus. In the cytoplasm, EV-DNA associates with dsDNA-inflammatory sensors (cGAS/STING) and endosomal proteins (Rab5/Rab7). Relevant to cancer, we found that EV-DNA isolated from leukemia cell lines communicates with mesenchymal stromal cells (MSCs), a critical component in the BM microenvironment. Furthermore, we illustrated the arrangement of sEVs and EV-DNA at a single vesicle level using super-resolution microscopy. Altogether, employing TSU isolation, we demonstrated EV-DNA distribution and a tool to evaluate the exact EV-DNA role of cell-cell communication in cancer.

4.
Cancers (Basel) ; 14(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35565295

RESUMO

Retinoblastoma is a tumor of the eye in children under the age of five caused by biallelic inactivation of the RB1 tumor suppressor gene in maturing retinal cells. Cancer models are essential for understanding tumor development and in preclinical research. Because of the complex organization of the human retina, such models were challenging to develop for retinoblastoma. Here, we present an organoid model based on differentiation of human embryonic stem cells into neural retina after inactivation of RB1 by CRISPR/Cas9 mutagenesis. Wildtype and RB1 heterozygous mutant retinal organoids were indistinguishable with respect to morphology, temporal development of retinal cell types and global mRNA expression. However, loss of pRB resulted in spatially disorganized organoids and aberrant differentiation, indicated by disintegration of organoids beyond day 130 of differentiation and depletion of most retinal cell types. Only cone photoreceptors were abundant and continued to proliferate, supporting these as candidate cells-of-origin for retinoblastoma. Transcriptome analysis of RB1 knockout organoids and primary retinoblastoma revealed gain of a retinoblastoma expression signature in the organoids, characterized by upregulation of RBL1 (p107), MDM2, DEK, SYK and HELLS. In addition, genes related to immune response and extracellular matrix were specifically upregulated in RB1-negative organoids. In vitro retinal organoids therefore display some features associated with retinoblastoma and, so far, represent the only valid human cancer model for the development of this disease.

5.
Curr Protoc Stem Cell Biol ; 55(1): e120, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32956559

RESUMO

Structures resembling whole organs, called organoids, are generated using pluripotent stem cells and 3D culturing methods. This relies on the ability of cells to self-reorganize after dissociation. In combination with certain supplemented factors, differentiation can be directed toward the formation of several organ-like structures. Here, a protocol for the generation of retinal organoids containing all seven retinal cell types is described. This protocol does not depend on Matrigel, and by keeping the organoids single and independent at all times, fusion is prevented and monitoring of differentiation is improved. Comprehensive phenotypic characterization of the in vitro-generated retinal organoids is achieved by the protocol for immunostaining outlined here. By comparing different stages of retinal organoids, the decrease and increase of certain cell populations can be determined. In order to be able to detect even small differences, it is necessary to quantify the immunofluorescent signals, for which we have provided a detailed protocol describing signal quantitation using the image-processing program Fiji. © 2020 The Authors. Basic Protocol 1: Differentiation protocol for 3D retinal organoids Basic Protocol 2: Immunostaining protocol for cryosections of retinal organoids Support Protocol: Embedding and sectioning protocol for 3D retinal organoids Basic Protocol 3: Quantitation protocol using Fiji.


Assuntos
Organoides/citologia , Retina/citologia , Técnicas de Cultura de Tecidos , Diferenciação Celular , Células-Tronco Embrionárias , Humanos
6.
Nat Metab ; 1(2): 236-250, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-31620676

RESUMO

Closed circulatory systems (CCS) underlie the function of vertebrate organs, but in long bones their structure is unclear, although they constitute the exit route for bone marrow (BM) leukocytes. To understand neutrophil emigration from BM, we studied the vascular system of murine long bones. Here we show that hundreds of capillaries originate in BM, cross murine cortical bone perpendicularly along the shaft and connect to the periosteal circulation. Structures similar to these trans-cortical-vessels (TCVs) also exist in human limb bones. TCVs express arterial or venous markers and transport neutrophils. Furthermore, over 80% arterial and 59% venous blood passes through TCVs. Genetic and drug-mediated modulation of osteoclast count and activity leads to substantial changes in TCV numbers. In a murine model of chronic arthritic bone inflammation, new TCVs develop within weeks. Our data indicate that TCVs are a central component of the CCS in long bones and may represent an important route for immune cell export from the BM.


Assuntos
Osso e Ossos/irrigação sanguínea , Capilares/fisiologia , Microcirculação , Fluxo Sanguíneo Regional , Animais , Medula Óssea/irrigação sanguínea , Humanos , Camundongos , Camundongos Endogâmicos DBA
7.
Cells ; 8(9)2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438586

RESUMO

Neutrophil extracellular traps (NETs) represent web-like structures consisting of externalized DNA decorated with granule proteins that are responsible for trapping and killing bacteria. However, undesirable effects of NET formation during carcinogenesis, such as metastasis support, have been described. In the present study, we evaluated the correlation between NETosis and disease progression in head and neck cancer (HNC) patients in order to establish a valid biomarker for an early detection and monitoring of HNC progression. Moreover, factors influencing NET release in HNC patients were revealed. We showed a significantly elevated vital NETosis in neutrophils isolated from early T1-T2 and N0-N2 stage patients, as compared to healthy controls. Additionally, in our experimental setting, we confirmed the involvement of tumor cells in the stimulation of NET formation. Interestingly, in advanced cancer stages (T3-4, N3) NETosis was reduced. This also correlated with the levels of granulocyte colony-stimulating factor (G-CSF) in plasma and tumor tissue. Altogether, we suggest that the elevated NETosis in blood can be used as a biomarker to detect early HNC and to predict patients at risk to develop tumor metastasis. Therapeutic disruption of NET formation may offer new roads for successful treatment of HNC patients in order to prevent metastasis.


Assuntos
Armadilhas Extracelulares , Neoplasias de Cabeça e Pescoço/sangue , Neoplasias de Cabeça e Pescoço/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Progressão da Doença , Feminino , Neoplasias de Cabeça e Pescoço/diagnóstico , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Eur Thyroid J ; 7(3): 111-119, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30023342

RESUMO

OBJECTIVES: Experimental models of Graves hyperthyroid disease accompanied by Graves orbitopathy (GO) can be efficiently induced in susceptible inbred strains of mice by immunization by electroporation of heterologous human TSH receptor (TSHR) A-subunit plasmid. The interrelated pathological findings in the thyroid glands of Graves disease (GD) that explain the core changes classically include diffuse follicular hyperplasia and multifocal mild lymphocytic infiltrate. However, the relative contributions of different thyroid tissue components (colloid, follicular cells, and stroma) have not been previously evaluated. In this study, we characterize the thyroid gland of an experimental mouse model of autoimmune GD. Our objective was to define the relative contribution of the different thyroid tissue components to the pathology of glands in the experimental model. METHODS: Mice were immunized with human TSHR A-subunit plasmid. Antibodies induced to human TSHR were pathogenic in vivo due to their cross-reactivity to mouse TSHR. RESULTS: Autoimmune thyroid disease in the model was characterized by histopathology of hyperplastic glands with large follicular cells. Further examination of thyroid glands of immunized animals revealed a significantly increased follicular area and follicle/stroma ratio, morphometrically correlated with a noninflammatory follicular hyperplasia/hypertrophy. The increased follicle/stroma ratio was the most relevant morphometrically variable summarizing the pathological changes for screening purposes. CONCLUSION: GD thyroid glands are enlarged and characterized by a noninflammatory diffuse follicular cell hyperplasia/hypertrophy and a significant increase in the follicles with an increased follicle/stroma ratio. Overall, this mouse model is a faithful model of an early hyperthyroid status of GD (diffuse glandular involvement and follicular expansion).

9.
Eur J Immunol ; 48(6): 990-1000, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29446073

RESUMO

The hemolytic uremic syndrome (HUS) is a life-threatening disease of the kidney that is induced by shiga toxin-producing E.coli. Major changes in the monocytic compartment and in CCR2-binding chemokines have been observed. However, the specific contribution of CCR2-dependent Gr1high monocytes is unknown. To investigate the impact of these monocytes during HUS, we injected a combination of LPS and shiga toxin into mice. We observed an impaired kidney function and elevated levels of the CCR2-binding chemokine CCL2 after shiga toxin/LPS- injection, thus suggesting Gr1high monocyte infiltration into the kidney. Indeed, the number of Gr1high monocytes was strongly increased one day after HUS induction. Moreover, these cells expressed high levels of CD11b suggesting activation after tissue entry. Non-invasive PET-MR imaging revealed kidney injury mainly in the kidney cortex and this damage coincided with the detection of Gr1high monocytes. Lack of Gr1high monocytes in Ccr2-deficient animals reduced neutrophil gelatinase-associated lipocalin and blood urea nitrogen levels. Moreover, the survival of Ccr2-deficient animals was significantly improved. Conclusively, this study demonstrates that CCR2-dependent Gr1high monocytes contribute to the kidney injury during HUS and targeting these cells is beneficial during this disease.


Assuntos
Infecções por Escherichia coli/imunologia , Escherichia coli/fisiologia , Síndrome Hemolítico-Urêmica/imunologia , Rim/patologia , Monócitos/imunologia , Receptores CCR2/metabolismo , Animais , Antígenos Ly/metabolismo , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Humanos , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores CCR2/genética , Receptores CXCR3/genética , Toxina Shiga II/administração & dosagem
10.
J Leukoc Biol ; 103(1): 13-22, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28882904

RESUMO

Ly6C+ monocytes are important components of the innate immune defense against infections. These cells have been shown to proliferate in the bone marrow of mice with systemic infections. However, the proliferative capacity of Ly6C+ monocytes in infected peripheral tissues as well as the associated regulatory mechanisms remain unclear. In this study, we analyzed the proliferative capacity of Ly6C+ monocytes in the urinary bladder after infection with uropathogenic E. coli, one of the most prevalent pathogen worldwide, and in LPS-induced peritonitis. We show that Ly6C+ monocytes proliferated in the bladder after infection with uropathogenic E. coli and in the peritoneum after intraperitoneal injection of LPS. We identified IL-6, a molecule that is highly expressed in infections, as a crucial regulator of Ly6C+ monocyte proliferation. Inhibition of IL-6 via administration of antibodies against IL-6 or gp130 impeded Ly6C+ monocyte proliferation. Furthermore, repression of IL-6 trans-signaling via administration of soluble gp130 markedly reduced the proliferation of Ly6C+ monocytes. Overall, this study describes the proliferation of Ly6C+ monocytes using models of urinary tract infection and LPS-induced peritonitis. IL-6 trans-signaling was identified as the regulator of Ly6C+ monocyte proliferation.


Assuntos
Antígenos Ly/metabolismo , Proliferação de Células , Infecções por Escherichia coli/microbiologia , Interleucina-6/metabolismo , Monócitos/imunologia , Infecções Urinárias/imunologia , Animais , Antígenos Ly/imunologia , Diferenciação Celular , Células Cultivadas , Escherichia coli/patogenicidade , Infecções por Escherichia coli/complicações , Feminino , Interleucina-6/genética , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Transdução de Sinais , Infecções Urinárias/metabolismo , Infecções Urinárias/microbiologia
11.
J Cereb Blood Flow Metab ; 37(10): 3355-3367, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28350253

RESUMO

The visualization of cerebral microvessels is essential for understanding brain remodeling after stroke. Injection of dyes allows for the evaluation of perfused vessels, but has limitations related either to incomplete microvascular filling or leakage. In conventional histochemistry, the analysis of microvessels is limited to 2D structures, with apparent limitations regarding the interpretation of vascular circuits. Herein, we developed a straight-forward technique to visualize microvessels in the whole ischemic mouse brain, combining the injection of a fluorescent-labeled low viscosity hydrogel conjugate with 3D solvent clearing followed by automated light sheet microscopy. We performed transient middle cerebral artery occlusion in C57Bl/6j mice and acquired detailed 3D vasculature images from whole brains. Subsequent image processing, rendering and fitting of blood vessels to a filament model was employed to calculate vessel length density, resulting in 0.922 ± 0.176 m/mm3 in healthy tissue and 0.329 ± 0.131 m/mm3 in ischemic tissue. This analysis showed a marked loss of capillaries with a diameter ≤ 10 µm and a more moderate loss of microvessels in the range > 10 and ≤ 20 µm, whereas vessels > 20 µm were unaffected by focal cerebral ischemia. We propose that this protocol is highly suitable for studying microvascular injury and remodeling post-stroke.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Imageamento Tridimensional/métodos , Microvasos/diagnóstico por imagem , Animais , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Capilares/fisiopatologia , Infarto da Artéria Cerebral Média , Camundongos , Microscopia/métodos , Solventes , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia
12.
J Am Soc Nephrol ; 28(2): 452-459, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27487796

RESUMO

The total number of glomeruli is a fundamental parameter of kidney function but very difficult to determine using standard methodology. Here, we counted all individual glomeruli in murine kidneys and sized the capillary tufts by combining in vivo fluorescence labeling of endothelial cells, a novel tissue-clearing technique, lightsheet microscopy, and automated registration by image analysis. Total hands-on time per organ was <1 hour, and automated counting/sizing was finished in <3 hours. We also investigated the novel use of ethyl-3-phenylprop-2-enoate (ethyl cinnamate) as a nontoxic solvent-based clearing reagent that can be handled without specific safety measures. Ethyl cinnamate rapidly cleared all tested organs, including calcified bone, but the fluorescence of proteins and immunohistochemical labels was maintained over weeks. Using ethyl cinnamate-cleared kidneys, we also quantified the average creatinine clearance rate per glomerulus. This parameter decreased in the first week of experimental nephrotoxic nephritis, whereas reduction in glomerular numbers occurred much later. Our approach delivers fundamental parameters of renal function, and because of its ease of use and speed, it is suitable for high-throughput analysis and could greatly facilitate studies of the effect of kidney diseases on whole-organ physiology.


Assuntos
Capilares/patologia , Nefropatias/patologia , Glomérulos Renais/patologia , Rim/irrigação sanguínea , Rim/patologia , Animais , Feminino , Camundongos , Microscopia , Tamanho do Órgão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...