RESUMO
Recently, polar side chains have emerged as a functional tool to enhance conjugated polymer doping properties by improving the polymer miscibility with polar chemical dopants and facilitate solvated ion uptake. In this work, we design and investigate a novel family of side chains containing a single ether function, enabling the modulation of the oxygen atom position along the side chain. A meticulous investigation of this new polymer series by differential scanning calorimetry, fast scanning chip calorimetry and X-ray scattering shows that polymers bearing single-ether side chains can show high degree of crystallinity under proper conditions. Importantly, due to a gauche effect allowing the side chain to bend at the oxygen atom, the degree of crystallinity of polymers can be controlled by the position of the oxygen atom along the side chain. The further the oxygen atom is from the conjugated backbone, the more crystalline the polymer becomes. In addition, for all new polymers, high thermomechanical properties are demonstrated, leading to remarkable electrical conductivities and thermoelectric power factors in rub-aligned and sequentially doped thin films. This work confirms the potential of single-ether side chains to be used as polar solubilizing side chains for the design of a next generation of p- and n-type semiconducting polymers with increased affinity to polar dopants while maintaining high molecular order.
RESUMO
The creation of free-standing lipid membranes has been so far of remarkable interest to investigate processes occurring in the cell membrane since its unsupported part enables studies in which it is important to maintain cell-like physicochemical properties of the lipid bilayer, that nonetheless depend on its molecular composition. In this study, we prepare pore-spanning membranes that mimic the composition of plasma membranes and perform force spectroscopy indentation measurements to unravel mechanistic insights depending on lipid composition. We show that this approach is highly effective for studying the mechanical properties of such membranes. Furthermore, we identify a direct influence of cholesterol and sphingomyelin on the elasticity of the bilayer and adhesion between the two leaflets. Eventually, we explore the possibilities of imaging in the unsupported membrane regions. For this purpose, we investigate the adsorption and movement of a peripheral protein, the fibroblast growth factor 2, on the complex membrane.
RESUMO
This study provides the first experimental polarized intermolecular and intramolecular optical absorption components of field-induced polarons in regioregular poly(3-hexylthiophene-2,5-diyl), rr-P3HT, a polymer semiconductor. Highly aligned rr-P3HT thin films were prepared by a high temperature shear-alignment process that orients polymer backbones along the shearing direction. rr-P3HT in-plane molecular orientation was measured by electron diffraction, and out-of-plane orientation was measured through series of synchrotron X-ray scattering techniques. Then, with molecular orientation quantified, polarized charge modulation spectroscopy was used to probe mid-IR polaron absorption in the âω = 0.075 - 0.75 eV range and unambiguously assign intermolecular and intramolecular optical absorption components of hole polarons in rr-P3HT. This data represents the first experimental quantification of these polarized components and allowed long-standing theoretical predictions to be compared to experimental results. The experimental data is discrepant with predictions of polaron absorption based on an adiabatic framework that works under the Born-Oppenheimer approximation, but the data is entirely consistent with a more recent nonadiabatic treatment of absorption based on a modified Holstein Hamiltonian. This nonadiabatic treatment was used to show that both intermolecular and intramolecular polaron coherence break down at length scales significantly smaller than estimated structural coherence in either direction. This strongly suggests that polaron delocalization is fundamentally limited by energetic disorder in rr-P3HT.
RESUMO
The possibility to control the charge carrier density through doping is one of the defining properties of semiconductors. For organic semiconductors, the doping process is known to come with several problems associated with the dopant compromising the charge carrier mobility by deteriorating the host morphology and/or introducing Coulomb traps. While for inorganic semiconductors these factors can be mitigated through (top-down) modulation doping, this concept has not been employed in organics. Here, this work shows that properly chosen host/dopant combinations can give rise to spontaneous, bottom-up modulation doping, in which the dopants preferentially sit in an amorphous phase, while the actual charge transport occurs predominantly in a crystalline phase with an unaltered microstructure, spatially separating dopants and mobile charges. Combining experiments and numerical simulations, this work shows that this leads to exceptionally high conductivities at relatively low dopant concentrations.
RESUMO
A series of polythiophenes with varying side chain density was synthesized, and their electrical and thermoelectric properties were investigated. Aligned and non-aligned thin films of the polymers were characterized in the neutral and chemically doped states. Optical and diffraction measurements revealed an overall lower order in the thin films with lower side chain density, also confirmed using polarized optical experiments on aligned thin films. However, upon doping the non-aligned films, a sixfold increase in electrical conductivity was observed for the polythiophene with the lowest side chain density compared to poly(3-hexylthiophene) (P3HT). We found that the improvement in conductivity was not due to a larger charge carrier density but an increase in charge carrier mobility after doping with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). On the other hand, doped aligned films did not show the same trend; lower side chain density instead led to a lower conductivity and Seebeck coefficient compared to those for P3HT. This was attributed to the poorer alignment of the polymer thin films with lower side chain density. The study demonstrates that optimizing side chain density is a synthetically simple and effective way to improve electrical conductivity in polythiophene films relevant to thermoelectric applications.
RESUMO
Understanding transport phenomena in conducting polymers (CP) is a main issue in order to optimize their performance and despite intense investigations, the influence of their microstructure remains controversial. By analyzing the thermoelectric measurements performed on highly oriented and non-oriented CP films, we show that an Heterogeneous Oriented Structure (HOSt) model considering both ordered and disordered domains is able to account for the thermoelectric transport in CP. This model unveils the key role of the crystallinity, the anisotropy and the alignment degree of these domains. It points out the importance of the thermal conductivity in the interpretation of the thermopower [Formula: see text] and explains the frequently observed electrical conductivity [Formula: see text] cut-off in the [Formula: see text] curves due to the disordered domains. By varying the alignment degree depending on the orientation and the anisotropy according to the face-on or the edge-on polymers conformation, the HOSt model successfully describes the overall measured thermoelectric properties by demonstrating its applicability to a wide variety of both oriented and non-oriented CP.
RESUMO
Directional wicking and spreading of liquids can be achieved by regular micro-patterns of specifically designed topographic features that break the reflection symmetry of the underlying pattern. The present study aims to understand the formation and stability of wetting films during the evaporation of volatile liquid drops on surfaces with a micro-pattern of triangular posts arranged in a rectangular lattice. Depending on the density and aspect ratio of the posts, we observe either spherical-cap shaped drops with a mobile three-phase contact line or the formation of circular or angular drops with a pinned three-phase contact line. Drops of the latter class eventually evolve into a liquid film extending to the initial footprint of the drop and a shrinking cap-shaped drop sitting on the film. The drop evolution is controlled by the density and aspect ratio of the posts, while no influence of the orientation of the triangular posts on the contact line mobility becomes evident. Our experiments corroborate previous results of systematic numerical energy minimization, predicting that conditions for a spontaneous retraction of a wicking liquid film depend weakly on the orientation of the film edge relative to the micro-pattern.
RESUMO
Efficient organic electronic devices are fabricated from both small molecules and disperse polymers, but materials with characteristics in between remain largely unexplored. Here, we present a gram-scale synthesis for a series of discrete n-type oligomers comprising alternating naphthalene diimide (NDI) and bithiophene (T2). Using C-H activation, discrete oligomers of type T2-(NDI-T2)n (n ≤ 7) and persistence lengths up to â¼10 nm are made. The absence of protection/deprotection reactions and the mechanistic nature of Pd-catalyzed C-H activation allow one to produce symmetrically terminated species almost exclusively, which is key to the fast preparation, high yields, and the general success of the reaction pathway. The reaction scope includes different thiophene-based monomers, end-capping to yield NDI-(T2-NDI)n (n ≤ 8), and branching at T2 units by nonselective C-H activation under certain conditions. We show how the optical, electronic, thermal, and structural properties depend on oligomer length along with a comparison to the disperse, polymeric analogue PNDIT2. From theory and experiments, we find that the molecular energy levels are not affected by chain length resulting from the strong donor-acceptor system. Absorption maxima saturate for n = 4 in vacuum and for n = 8 in solution. Linear oligomers T2-(NDI-T2)n are highly crystalline with large melting enthalpies up to 33 J/g; NDI-terminated oligomers show reduced crystallinity, stronger supercooling, and more phase transitions. Branched oligomers and those with bulky thiophene comonomers are amorphous. Large oligomers exhibit similar packing characteristics compared to PNDIT2, making these oligomers ideal models to study length-structure-function relationships at constant energy levels.
RESUMO
Dynamic windows allow monitoring of in-door solar radiation and thus improve user comfort and energy efficiency in buildings and vehicles. Existing technologies are, however, hampered by limitations in switching speed, energy efficiency, user control, or production costs. Here, we introduce a new concept for self-powered switchable glazing that combines a nematic liquid crystal, as an electro-optic active layer, with an organic photovoltaic material. The latter aligns the liquid crystal molecules and generates, under illumination, an electric field that changes the molecular orientation and thereby the device transmittance in the visible and near-infrared region. Small-area devices can be switched from clear to dark in hundreds of milliseconds without an external power supply. The drop in transmittance can be adjusted using a variable resistor and is shown to be reversible and stable for more than 5 h. First solution-processed large-area (15 cm2) devices are presented, and prospects for smart window applications are discussed.
RESUMO
We report a record thermoelectric power factor of up to 160 µW m-1 K-2 for the conjugated polymer poly(3-hexylthiophene) (P3HT). This result is achieved through the combination of high-temperature rubbing of thin films together with the use of a large molybdenum dithiolene p-dopant with a high electron affinity. Comparison of the UV-vis-NIR spectra of the chemically doped samples to electrochemically oxidized material reveals an oxidation level of 10%, i.e., one polaron for every 10 repeat units. The high power factor arises due to an increase in the charge-carrier mobility and hence electrical conductivity along the rubbing direction. We conclude that P3HT, with its facile synthesis and outstanding processability, should not be ruled out as a potential thermoelectric material.
RESUMO
Droplets made of a water/ethanol mixture spontaneously self-propel in an oil/surfactant solution and, depending on the initial ethanol concentration at the time of production, may evolve in up to three stages. Upon self-propulsion the droplets absorb surfactant molecules during their continuous motion in the oily phase. In combination with the continuous loss of ethanol this mass exchange with the ambient phase may lead to a spontaneous phase separation of the water/ethanol mixture, and eventually to the formation of characteristic Janus droplets. Supported by experimental evidence, we propose a simple model that is able to explain the propulsion velocity and its scaling with the droplet radius in the last stage of the droplet evolution.
RESUMO
Crystalline thin films of π-conjugated molecules are relevant as the active layers in organic electronic devices. Therefore, materials with enhanced control over the supramolecular arrangement, crystallinity, and thin-film morphology are desirable. Herein, it is reported that hydrogen-bonded substituents serve as additional structure-directing elements that positively affect crystallization, thin-film morphology, and device performance of p-type organic semiconductors. It is observed that a quaterthiophene diacetamide exhibits a denser packing than that of other quaterthiophenes in the single-crystal structure and, as a result, displays enhanced intermolecular electronic interactions. This feature was preserved in crystalline thin films that exhibited a layer-by-layer morphology, with large domain sizes and high internal order. As a result, organic field-effect transistors of these polycrystalline thin films showed mobilities in the range of the best mobility values reported for single-crystalline quaterthiophenes. The use of hydrogen-bonded groups may, thus, provide an avenue for organic semiconducting materials with improved morphology and performance.
RESUMO
Wicking of wetting liquids into micropatterns of posts with homogeneous triangular cross section is studied in experiments and by numerical energy minimizations. To test for directional wicking, we fabricated regular arrays of posts with various combinations of line fractions and aspect ratios using standard photolithography processes. In agreement with numerical energy minimizations of the liquid film morphology, we find spontaneous wicking in the experiments only for line fractions and aspect ratios where the homogeneous liquid film represents the state of lowest interfacial free energy and where no local energy minimum could be detected in our numerical energy minimizations. The numerical results further demonstrate that the stability of a certain morphology of the terminal meniscus controls the direction of wicking relative to the orientation of the triangular posts. The observed selectivity of spontaneous wicking with respect to the meniscus orientation can be exploited to build a microfluidic rectifier for partially wetting liquids.
RESUMO
Recent demonstrations of inverted thermal activation of charge mobility in polymer field-effect transistors have excited the interest in transport regimes not limited by thermal barriers. However, rationalization of the limiting factors to access such regimes is still lacking. An improved understanding in this area is critical for development of new materials, establishing processing guidelines, and broadening of the range of applications. Here we show that precise processing of a diketopyrrolopyrrole-tetrafluorobenzene-based electron transporting copolymer results in single crystal-like and voltage-independent mobility with vanishing activation energy above 280 K. Key factors are uniaxial chain alignment and thermal annealing at temperatures within the melting endotherm of films. Experimental and computational evidences converge toward a picture of electrons being delocalized within crystalline domains of increased size. Residual energy barriers introduced by disordered regions are bypassed in the direction of molecular alignment by a more efficient interconnection of the ordered domains following the annealing process.
RESUMO
Multiphase flows in porous media are important in many natural and industrial processes. Pore-scale models for multiphase flows have seen rapid development in recent years and are becoming increasingly useful as predictive tools in both academic and industrial applications. However, quantitative comparisons between different pore-scale models, and between these models and experimental data, are lacking. Here, we perform an objective comparison of a variety of state-of-the-art pore-scale models, including lattice Boltzmann, stochastic rotation dynamics, volume-of-fluid, level-set, phase-field, and pore-network models. As the basis for this comparison, we use a dataset from recent microfluidic experiments with precisely controlled pore geometry and wettability conditions, which offers an unprecedented benchmarking opportunity. We compare the results of the 14 participating teams both qualitatively and quantitatively using several standard metrics, such as fractal dimension, finger width, and displacement efficiency. We find that no single method excels across all conditions and that thin films and corner flow present substantial modeling and computational challenges.
RESUMO
Doping of polymer semiconductors such as poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2- b]thiophene) (PBTTT) with acceptor molecules such as 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) is widely used to tune the charge transport and thermoelectric (TE) properties in thin films. However, the mechanism of dopant insertion in the polymer matrix, insertion kinetics, and the ultimate doping levels reached have been investigated only marginally. This contribution addresses the effect of alkyl side chain length on the doping mechanism of a series of PBTTTs with linear side chains ranging from n-octyl to n-octyldecyl. The study focuses on thin films oriented by high-temperature rubbing and sequentially doped in F4TCNQ solution. Structure-property correlations are established as a function of side chain length by a combination of transmission electron microscopy, polarized UV-vis-NIR spectroscopy, and charge transport/thermopower measurements. Intercalation of F4TCNQ into the layers of side chains results in the expansion of the lattice along the side chains and the contraction along the π-stacking direction for all polymers. The extent of lattice expansion decreases with the increasing side chain length. UV-vis-NIR spectroscopy demonstrates integer charge transfer for all investigated PBTTTs. The doping kinetics and the final doping level depend on both the side chain length and packing. Highly disordered n-octyl and crystalline n-octyldecyl side chain layers tend to hamper dopant diffusion in the side chain layers contrary to n-dodecyl side chains that can host the highest proportion of dopants. Consequently, the best TE properties are observed for C12-PBTTT films. Alignment of the polymers significantly enhances the TE performance by increasing the charge conductivity and the thermopower along the rubbing direction. Aligned films of C12-PBTTT show charge conductivities of 193 S cm-1 along the rubbing direction and power factors of approximately 100 µW m-1 K-2 versus a few µW m-1 K-2 for nonoriented films.
RESUMO
Junction-functionalized donor-acceptor (D-A) block copolymers (BCPs) enable spatial and electronic control over interfacial charge dynamics in excitonic devices such as solar cells. Here, we present the design, synthesis, morphology, and electronic characterization of block junction-functionalized, all-conjugated, all-crystalline D-A BCPs. Poly(3-hexylthiophene) (P3HT), a single thienylated diketopyrrolopyrrole (Th xDPPTh x, x = 1 or 2) unit, and poly{[ N, N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]- alt-5,5'-(2,2'-bithiophene)} (PNDIT2) are used as donor, interfacial unit, and acceptor, respectively. Almost all C-C coupling steps are accomplished by virtue of C-H activation. Synthesis of the macroreagent H-P3HT-Th xDPPTh x, with x determining its C-H reactivity, is key to the synthesis of various BCPs of type H-P3HT-Th xDPPTh x- block-PNDIT2. Morphology is determined from a combination of calorimetry, transmission electron microscopy (TEM), and thin-film scattering. Block copolymer crystallinity of P3HT and PNDIT2 is reduced, indicating frustrated crystallization. A long period lp is invisible from TEM, but shows up in resonant soft X-ray scattering experiments at a length scale of lp â¼ 60 nm. Photoluminescence of H-P3HT-Th xDPPTh x indicates efficient transfer of the excitation energy to the DPP chain end, but is quenched in BCP films. Transient absorption and pump-push photocurrent spectroscopies reveal geminate recombination (GR) as the main loss channel in as-prepared BCP films independent of junction functionalization. Melt annealing increases GR as a result of the low degree of crystallinity and poorly defined interfaces and additionally changes backbone orientation of PNDIT2 from face-on to edge-on. These morphological effects dominate solar cell performance and cause an insensitivity to the presence of the block junction.
RESUMO
We report the results of comprehensive experiments and numerical calculations of interfacial morphologies of water confined to the hydrophilic top face of rectangular posts subjected to vertical vibrations. In response to mechanical driving, an initially flat liquid channel is collected into a liquid bulge that forms in the center of the rectangular post if the acceleration exceeds a certain threshold. The bulge morphology persists after the driving is switched off, in agreement with the morphological bistability of static interfacial shapes on posts with large length-to-width ratios. In a narrow frequency band, the channel does not decay into a bulge at any acceleration amplitude, but displays irregular capillary waves and sloshing instead. On short posts, however, a liquid bulge can be dynamically sustained through vertical vibrations but quickly decays into a homogeneous channel after the external driving is stopped. To explain the dynamic bulging of the liquid interface, we propose an effective lifting force pulling on the drop's slowly moving center of mass in the presence of fast oscillation modes.
RESUMO
Anisotropic spreading of liquids and elongated droplet shapes are often encountered on surfaces decorated with a periodic micropattern of linear surface topographies. Numerical calculations and wetting experiments show that the shape evolution of droplets that are slowly growing on a surface with parallel grooves can be grouped into two distinct morphological regimes. In the first regime, the liquid of the growing droplet spreads only into the direction parallel to the grooves. In the second regime, the three-phase contact line advances also perpendicular to the grooves, whereas the growing droplets approach a scale-invariant shape. Here, we demonstrate that shapes of droplets in contact with a large number of linear grooves are identical to the shapes of droplets confined to a plane chemical stripe, where this mapping of shapes is solely based on the knowledge of the cross section of the linear grooves and the material contact angle. The spectrum of interfacial shapes on the chemical stripe can be exploited to predict the particular growth mode and the asymptotic value of the base eccentricity in the limit of droplets covering a large number of grooves. The proposed model shows an excellent agreement with experimentally observed base eccentricities for droplets on grooves of various cross sections. The universality of the model is underlined by the accurate match with available literature data for droplet eccentricities on parallel chemical stripes.
RESUMO
A detailed investigation of in situ-synthesized all-conjugated block copolymer (BCP) compatibilized ternary blends containing poly(3-hexylthiophene) (P3HT) and poly{[ N, N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dibcarboximide)-2,6-diyl]- alt-5,5'-(2,2'-bithiophene)} (PNDIT2) as donor and acceptor polymers, respectively, is presented. Both polymers are incompatible and show strong segregation in blends, which renders compatibilization with their corresponding BCPs promising to enable nanometer-phase-separated structures suitable for excitonic devices. Here, we synthesize a ternary block copolymer/homopolymer blend system and investigate the phase behavior as a function of block copolymer molecular weight and different annealing conditions. The device performance decreases on increasing annealing temperatures. To understand this effect, morphological investigations including atomic force microscopy, high-resolution transmission electron microscopy (HR-TEM), and grazing incidence wide- and small-angle X-ray scattering (GIWAXS/GISAXS) are carried out. On comparing domain sizes of pristine and compatibilized blends obtained from GISAXS, a weak compatibilization effect appears to take place for the in situ-synthesized ternary systems. The effect of thermal annealing is most prevalent for all samples, which, for the highest annealing temperature above the melting point of PNDIT2 (310 °C), ultimately leads to a change from the face-on to edge-on orientation of PNDIT2, as seen in GIWAXS. This effect dominates and decreases all photovoltaic parameters, irrespective of whether a pristine or compatibilized blend is used.