Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 10698, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021195

RESUMO

The high-energy release of plutonium (Pu) and uranium (U) during the Maralinga nuclear trials (1955-1963) in Australia, designed to simulate high temperature, non-critical nuclear accidents, resulted in wide dispersion µm-sized, radioactive, Pu-U-bearing 'hot' particles that persist in soils. By combining non-destructive, multi-technique synchrotron-based micro-characterization with the first nano-scale imagining of the composition and textures of six Maralinga particles, we find that all particles display intricate physical and chemical make-ups consistent with formation via condensation and cooling of polymetallic melts (immiscible Fe-Al-Pu-U; and Pb ± Pu-U) within the detonation plumes. Plutonium and U are present predominantly in micro- to nano-particulate forms, and most hot particles contain low valence Pu-U-C compounds; these chemically reactive phases are protected by their inclusion in metallic alloys. Plutonium reworking was observed within an oxidised rim in a Pb-rich particle; however overall Pu remained immobile in the studied particles, while small-scale oxidation and mobility of U is widespread. It is notoriously difficult to predict the long-term environmental behaviour of hot particles. Nano-scale characterization of the hot particles suggests that long-term, slow release of Pu from the hot particles may take place via a range of chemical and physical processes, likely contributing to on-going Pu uptake by wildlife at Maralinga.

2.
J Environ Radioact ; 223-224: 106398, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32932188

RESUMO

Plutonium (Pu) interactions in the environment are highly complex. Site-specific variables play an integral role in determining the chemical and physical form of Pu, and its migration, bioavailability, and immobility. This paper aims to identify the key variables that can be used to highlight regions of radioecological sensitivity and guide remediation strategies in Australia. Plutonium is present in the Australian environment as a result of global fallout and the British nuclear testing program of 1952-1958 in central and west Australia (Maralinga and Montebello islands). We report the first systematic measurements of 239+240Pu and 238Pu activity concentrations in distal (≥1000 km from test sites) catchment outlet sediments from Queensland, Australia. The average 239+240Pu activity concentration was 0.29 mBq.g -1 (n = 73 samples) with a maximum of 4.88 mBq.g -1.238Pu/239+240Pu isotope ratios identified a large range (0.02-0.29 (RSD: 74%)) which is congruent with the heterogeneous nuclear material used for the British nuclear testing programme at Maralinga and Montebello Islands. The use of a modified PCA relying on non-linear distance correlation (dCorr) provided broader insight into the impact of environmental variables on the transport and migration of Pu in this soil system. Primary key environmental indicators of Pu presence were determined to be actinide/lanthanide/heavier transition metals, elevation, electrical conductivity (EC), CaO, SiO2, SO3, landform, geomorphology, land use, and climate explaining 81.7% of the variance of the system. Overall this highlighted that trace level Pu accumulations are associated with the coarse, refractive components of Australian soils, and are more likely regulated by the climate of the region and overall soil type.


Assuntos
Monitoramento de Radiação , Indicadores Ambientais , Sedimentos Geológicos , Ilhas , Plutônio/análise , Queensland , Dióxido de Silício , Poluentes Radioativos do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...