Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Nat Prod ; 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39455415

RESUMO

Natural products are a sustainable resource for drug discovery, but their identification in complex mixtures remains a daunting task. We present an automated pipeline that compares, harmonizes and ranks the annotations of LC-HRMS data by different tools. When applied to 7,400 extracts derived from 6,566 strains belonging to 86 actinomycete genera, it yielded 150,000 molecules after processing over 50 million MS features. The web-based Molecules Gateway provides a highly interactive access to experimental and calculated data for these molecules, along with the metadata related to extracts and producer strains. We show how the Molecules Gateway can be used to rapidly identify known hard to find microbial products, unreported analogs of known families and not yet described metabolites. The Molecules Gateway, which complements available repositories, contains annotated MS data, both acquired and computationally processed under an identical workflow, making it suitable for global analyses which reveal a large and untapped chemical diversity afforded by actinomycetes.

2.
ACS Chem Biol ; 18(4): 861-874, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-36920304

RESUMO

Streptomycetes are bacteria known for their extraordinary biosynthetic capabilities. Herein, we describe the genome and metabolome of a particularly talented strain, Streptomyces ID71268. Its 8.4-Mbp genome harbors 32 bioinformatically predicted biosynthetic gene clusters (BGCs), out of which 10 are expressed under a single experimental condition. In addition to five families of known metabolites with previously assigned BGCs (nigericin, azalomycin F, ectoine, SF2766, and piericidin), we were able to predict BGCs for three additional metabolites: streptochlorin, serpetene, and marinomycin. The strain also produced two families of presumably novel metabolites, one of which was associated with growth inhibitory activity against the human opportunistic pathogen Acinetobacter baumannii in an iron-dependent manner. Bioassay-guided fractionation, followed by extensive liquid chromatography-mass spectrometry (LC-MS) and NMR analyses, established that the molecule responsible for the observed antibacterial activity is an unusual tridecapeptide siderophore with a ring-and-tail structure: the heptapeptide ring is formed through a C-C bond between a 2,3-dihydroxybenzoate (DHB) cap on Gly1 and the imidazole moiety of His7, while the hexapeptide tail is sufficient for binding iron. This molecule, named megalochelin, is the largest known siderophore. The megalochelin BGC encodes a 13-module nonribosomal peptide synthetase for the synthesis of the tridecapeptide, and a copper-dependent oxidase, likely responsible for the DHB-imidazole cross-link, whereas the genes for synthesis of the DHB starter unit are apparently specified in trans by a different BGC. Our results suggest that prolific producers of specialized metabolites may conceal hidden treasures within a background of known compounds.


Assuntos
Ferro , Peptídeos , Sideróforos , Hidroxibenzoatos/química , Imidazóis , Ferro/metabolismo , Espectrometria de Massas , Família Multigênica , Sideróforos/química , Peptídeos/química , Streptomyces/química , Acinetobacter baumannii/metabolismo
3.
RSC Adv ; 12(26): 16640-16655, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35754877

RESUMO

In the search for structurally novel metabolites with antibacterial activity, innovative approaches must be implemented to increase the probability of discovering novel chemistry from microbial sources. Here we report on the application of metabolomic tools to the genus Actinoallomurus, a poorly explored member of the Actinobacteria. From examining extracts derived from 88 isolates belonging to this genus, we identified a family of cyclodepsipeptides acylated with a C20 polyketide chain, which we named allopeptimicins. These molecules possess unusual structural features, including several double bonds in the amino-polyketide chain and four non-proteinogenic amino acids in the octapeptide. Remarkably, allopeptimicins are produced as a complex of active and inactive congeners, the latter carrying a sulfate group on the polyketide amine. This modification is also a mechanism of self-protection in the producer strain. The structural uniqueness of allopeptimicins is reflected in a biosynthetic gene cluster showing a mosaic structure, with dedicated gene cassettes devoted to formation of specialized precursors and modular assembly lines related to those from different pathways.

4.
J Nat Prod ; 85(5): 1239-1247, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35422124

RESUMO

Here, we describe two N-acetyl-cysteinylated streptophenazines (1 and 2) produced by the soil-derived Streptomyces sp. ID63040 and identified through a metabolomic approach. These metabolites attracted our interest due to their low occurrence frequency in a large library of fermentation broth extracts and their consistent presence in biological replicates of the producer strain. The compounds were found to possess broad-spectrum antibacterial activity while exhibiting low cytotoxicity. The biosynthetic gene cluster from Streptomyces sp. ID63040 was found to be highly similar to the streptophenazine reference cluster in the MIBiG database, which originates from the marine Streptomyces sp. CNB-091. Compounds 1 and 2 were the main streptophenazine products from Streptomyces sp. ID63040 at all cultivation times but were not detected in Streptomyces sp. CNB-091. The lack of obvious candidates for cysteinylation in the Streptomyces sp. ID63040 biosynthetic gene cluster suggests that the N-acetyl-cysteine moiety derives from cellular functions, most likely from mycothiol. Overall, our data represent an interesting example of how to leverage metabolomics for the discovery of new natural products and point out the often-neglected contribution of house-keeping cellular functions to natural product diversification.


Assuntos
Produtos Biológicos , Streptomyces , Antibacterianos/metabolismo , Produtos Biológicos/metabolismo , Metabolômica , Família Multigênica , Streptomyces/genética
5.
J Ind Microbiol Biotechnol ; 48(3-4)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33599744

RESUMO

Natural products have provided many molecules to treat and prevent illnesses in humans, animals and plants. While only a small fraction of the existing microbial diversity has been explored for bioactive metabolites, tens of thousands of molecules have been reported in the literature over the past 80 years. Thus, the main challenge in microbial metabolite screening is to avoid the re-discovery of known metabolites in a cost-effective manner. In this perspective, we report and discuss different approaches used in our laboratory over the past few years, ranging from bioactivity-based screening to looking for metabolic rarity in different datasets to deeply investigating a single Streptomyces strain. Our results show that it is possible to find novel chemistry through a limited screening effort, provided that appropriate selection criteria are in place.


Assuntos
Bactérias/metabolismo , Produtos Biológicos/metabolismo , Biblioteca Gênica , Animais , Bactérias/química , Bactérias/genética , Produtos Biológicos/química , Pesquisa Biomédica , Avaliação Pré-Clínica de Medicamentos , Humanos
6.
ACS Chem Biol ; 14(3): 356-360, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30830742

RESUMO

Glycopeptide antibiotics are used to treat severe multidrug resistant infections caused by Gram-positive bacteria. Dalbavancin is a second generation glycopeptide approved for human use, which is obtained from A40926, a lipoglycopeptide produced by Nonomuraea sp. ATCC39727 as a mixture of biologically active congeners mainly differing in the fatty acid chains present on the glucuronic moiety. In this study, we constructed a double mutant of the A40926 producer strain lacking dbv23, and thus defective in mannose acetylation, a feature that increases A40926 production, and lacking the acyltransferases Dbv8, and thus incapable of installing the fatty acid chains. The double mutant afforded the desired deacyl, deacetyl A40926 intermediates, which could be converted by chemical reacylation yielding A40926 analogs with a greatly reduced number of congeners. The newly acylated analogs could then be transformed into dalbavancin analogs possessing the same in vitro properties as the approved drug.


Assuntos
Antibacterianos/química , Glicopeptídeos/química , Teicoplanina/análogos & derivados , Actinomycetales/efeitos dos fármacos , Antibacterianos/farmacologia , Descoberta de Drogas , Farmacorresistência Bacteriana Múltipla , Escherichia coli/efeitos dos fármacos , Manose/química , Teicoplanina/química , Teicoplanina/farmacologia
7.
J Nat Prod ; 82(1): 35-44, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30615447

RESUMO

The increasing incidence of infections caused by drug-resistant pathogens requires new efforts for the discovery of novel antibiotics. By screening microbial extracts in an assay aimed at identifying compounds interfering with cell wall biosynthesis, based on differential activity against a Staphylococcus aureus strain and its isogenic l-form, the potent enduracyclinones (1, 2), containing the uncommon amino acid enduracididine linked to a six-ring aromatic skeleton, were discovered from different Nonomuraea strains. The structures of 1 and 2 were established through a combination of derivatizations, oxidative cleavages, and NMR analyses of natural and 13C-15N-labeled compounds. Analysis of the biosynthetic cluster provides the combination of genes for the synthesis of enduracididine and type II polyketide synthases. Enduracyclinones are active against Gram-positive pathogens (especially Staphylococcus spp.), including multi-drug-resistant strains, with minimal inhibitory concentrations in the range of 0.0005 to 4 µg mL-1 and with limited toxicity toward eukaryotic cells. The combined results from assays and macromolecular syntheses suggest a possible dual mechanism of action in which both peptidoglycan and DNA syntheses are inhibited by these molecules.


Assuntos
Antibacterianos/isolamento & purificação , Policetídeos/isolamento & purificação , Pirrolidinas/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Mineração de Dados , Família Multigênica , Policetídeos/química , Policetídeos/metabolismo , Policetídeos/farmacologia
8.
Antibiotics (Basel) ; 7(2)2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29904034

RESUMO

In screening for novel antibiotics, an attractive element of novelty can be represented by screening previously underexplored groups of microorganisms. We report the results of screening 200 strains belonging to the actinobacterial genus Actinoallomurus for their production of antibacterial compounds. When grown under just one condition, about half of the strains produced an extract that was able to inhibit growth of Staphylococcus aureus. We report here on the metabolites produced by 37 strains. In addition to previously reported aminocoumarins, lantibiotics and aromatic polyketides, we described two novel and structurally unrelated polyethers, designated α-770 and α-823. While we identified only one producer strain of the former polyether, 10 independent Actinoallomurus isolates were found to produce α-823, with the same molecule as main congener. Remarkably, production of α-823 was associated with a common lineage within Actinoallomurus, which includes A.fulvus and A.amamiensis. All polyether producers were isolated from soil samples collected in tropical parts of the world.

9.
J Antimicrob Chemother ; 73(2): 414-424, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29092042

RESUMO

Objectives: To characterize NAI-107 and related lantibiotics for their in vitro activity against Gram-negative pathogens, alone or in combination with polymyxin, and against non-dividing cells or biofilms of Staphylococcus aureus. NAI-107 was also evaluated for its propensity to select or induce self-resistance in Gram-positive bacteria. Methods: We used MIC determinations and chequerboard experiments to establish the antibacterial activity of the examined compounds against target microorganisms. Time-kill assays were used to evaluate killing of exponential and stationary-phase cells. The effects on biofilms (growth inhibition and biofilm eradication) were evaluated using biofilm-coated pegs. The frequency of spontaneous resistant mutants was evaluated by either direct plating or by continuous sub-culturing at 0.5 × MIC levels, followed by population analysis profiles. Results: The results showed that NAI-107 and its brominated variant are highly active against Neisseria gonorrhoeae and some other fastidious Gram-negative pathogens. Furthermore, all compounds strongly synergized with polymyxin against Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa, and showed bactericidal activity. Surprisingly, NAI-107 alone was bactericidal against non-dividing A. baumannii cells. Against S. aureus, NAI-107 and related lantibiotics showed strong bactericidal activity against dividing and non-dividing cells. Activity was also observed against S. aureus biofilms. As expected for a lipid II binder, no significant resistance to NAI-107 was observed by direct plating or serial passages. Conclusions: Overall, the results of the current work, along with previously published results on the efficacy of NAI-107 in experimental models of infection, indicate that this lantibiotic represents a promising option in addressing the serious threat of antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Biofilmes/efeitos dos fármacos , Sinergismo Farmacológico , Bactérias Gram-Negativas/efeitos dos fármacos , Polimixinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Bactérias Gram-Negativas/fisiologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos
10.
J Nat Prod ; 80(4): 819-827, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28218529

RESUMO

Four metabolites, designated paramagnetoquinone A, B, C, and D (1-4), were isolated from three strains belonging to the actinomycete genus Actinoallomurus. Compounds 1 and 2 showed potent antibacterial activity with MIC values lower than 0.015 µg/mL against Gram-positive pathogens, including antibiotic-resistant strains. Since compounds 1 and 2 were NMR-silent due to the presence of an oxygen radical, structure elucidation was achieved through a combination of derivatizations, oxidations, and analysis of 13C-labeled compounds. The paramagnetoquinones share the same carbon scaffold as tetracenomycin but carry two quinones and a five-membered lactone fused to the aromatic system. Compounds 2 and 1 are identical except for an unprecedented replacement of a methoxy in 2 by a methylamino group in 1. Related compounds devoid of methyl group(s) and of antibacterial activity were isolated from a different Actinoallomurus strain. The likely pmq biosynthetic gene cluster was identified from strain ID145113. While the cluster encodes many of the expected enzymes involved in the formation of aromatic polyketides, it also encodes a dedicated ketoacid dehydrogenase complex and an unusual acyl carrier protein transacylase, suggesting that an unusual starter unit might prime the polyketide synthase.


Assuntos
Actinomycetales/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Quinonas/isolamento & purificação , Quinonas/farmacologia , Actinomycetales/genética , Proteína de Transporte de Acila/metabolismo , Antibacterianos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Filogenia , Policetídeo Sintases/metabolismo , Policetídeos , Quinonas/química
11.
J Antibiot (Tokyo) ; 70(1): 73-78, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27220409

RESUMO

A screening program on a limited number of strains belonging to the Actinoallomurus genus yielded a series of new angucyclinones. NMR and MS analyses established that these compounds are characterized by an unusual lactone ring and present up to four halogens per molecule, with one congener representing the first natural product containing a trichloromethyl substitution on an aromatic system. Remarkably, this family of metabolites seems to be produced by phylogenetically distinct Actinoallomurus isolates. Because of the unique structural features and wide distribution among Actinoallomurus, we have designated these angucyclinones as allocyclinones. Allocyclinones possess interesting activity against different Gram-positive bacteria, including antibiotic-resistant strains, with antibacterial potency increasing with the number of chlorine substituents. The tetrachlorinated compound is the most abundant congener in the allocyclinone complex.


Assuntos
Actinomycetales/metabolismo , Antraquinonas/farmacologia , Antibacterianos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Actinomycetales/genética , Antraquinonas/química , Antraquinonas/isolamento & purificação , Antibacterianos/química , Antibacterianos/isolamento & purificação , Farmacorresistência Bacteriana , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Filogenia , Relação Estrutura-Atividade
12.
J Nat Prod ; 78(11): 2642-7, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26512731

RESUMO

We identified an Actinoallomurus strain producing NAI-107, a chlorinated lantibiotic effective against multidrug-resistant Gram-positive pathogens and previously reported from the distantly related genus Microbispora. Inclusion of KBr in the production medium of either the Actinoallomurus or the Microbispora producer readily afforded brominated variants of NAI-107, which were designated as NAI-108. The other post-translational modifications naturally occurring in this lantibiotic family (i.e., hydroxylation of Pro-14 and C-terminal decarboxylation) were unaffected by the presence of a brominated tryptophan. In addition to being the first example of a bromine-containing lantibiotic, NAI-108 displayed a small but consistent improvement in antibacterial activity against all tested strains. The brominated lantibiotic maintained the same rapid bactericidal activity as NAI-107 but at reduced concentrations, consistent with its increased potency and with the role played by the hydrophobicity of the first lanthionine ring. NAI-108 thus represents an interesting addition to a promising family of potent and effective lantibiotics.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/biossíntese , Bacteriocinas/farmacologia , Hidrocarbonetos Bromados/farmacologia , Actinobacteria/química , Actinomycetales/química , Alanina/análogos & derivados , Sequência de Aminoácidos , Antibacterianos/biossíntese , Antibacterianos/química , Bacteriocinas/química , Bactérias Gram-Positivas/efeitos dos fármacos , Hidrocarbonetos Bromados/química , Testes de Sensibilidade Microbiana , Microsporídios/química , Estrutura Molecular , Peptídeos , Sulfetos
14.
ACS Chem Biol ; 10(4): 1034-42, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25574687

RESUMO

Lantibiotics, an abbreviation for "lanthionine-containing antibiotics", interfere with bacterial metabolism by a mechanism not exploited by the antibiotics currently in clinical use. Thus, they have aroused interest as a source for new therapeutic agents because they can overcome existing resistance mechanisms. Starting from fermentation broth extracts preselected from a high-throughput screening program for discovering cell-wall inhibitors, we isolated a series of related class I lantibiotics produced by different genera of actinomycetes. Analytical techniques together with explorative chemistry have been used to establish their structures: the newly described compounds share a common 24 aa sequence with the previously reported lantibiotic planosporicin (aka 97518), differing at positions 4, 6, and 14. All of these compounds maintain an overall -1 charge at physiological pH. While all of these lantibiotics display modest antibacterial activity, their potency can be substantially modulated by progressively eliminating the negative charges, with the most active compounds carrying basic amide derivatives of the two carboxylates originally present in the natural compounds. Interestingly, both natural and chemically modified lantibiotics target the key biosynthetic intermediate lipid II, but the former compounds do not bind as effectively as the latter in vivo. Remarkably, the basic derivatives display an antibacterial potency and a killing effect similar to those of NAI-107, a distantly related actinomycete-produced class I lantibiotic which lacks altogether carboxyl groups and which is a promising clinical candidate for treating Gram-positive infections caused by multi-drug-resistant pathogens.


Assuntos
Actinobacteria/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Actinobacteria/química , Actinobacteria/classificação , Actinobacteria/crescimento & desenvolvimento , Bacteriocinas/química , Bacteriocinas/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos/métodos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Streptomyces/classificação , Streptomyces/metabolismo , Relação Estrutura-Atividade
15.
Antimicrob Agents Chemother ; 58(4): 1922-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24419352

RESUMO

NAI-603 is a ramoplanin derivative designed to overcome the tolerability issues of the parent drug as a systemic agent. NAI-603 is highly active against aerobic and anaerobic Gram-positive bacteria, with MICs ranging from 0.008 to 8 µg/ml. MICs were not significantly affected by pH (range, 6 to 8), by inoculum up to 10(8) CFU/ml, or by addition of 50% human serum. Against staphylococci and enterococci, NAI-603 was rapidly bactericidal, with minimum bactericidal concentration (MBC)/MIC ratios never exceeding 4. The frequency of spontaneous resistance was low at 2× to 4× MIC (≤1×10(-6) to ≤1×10(-8)) and below the detection limit (about ≤1×10(-9)) at 8×MIC. Serial subcultures at 0.5×MIC yielded at most an 8-fold increase in MICs. In a systemic infection induced by methicillin-resistant Staphylococcus aureus (MRSA), the 50% effective dose (ED50) of intravenous (i.v.) NAI-603 was 0.4 mg/kg, lower than that of oral (p.o.) linezolid (1.4 mg/kg) and subcutaneous (s.c.) teicoplanin (1.4 mg/kg) or vancomycin (0.6 mg/kg). In neutropenic mice infected with vancomycin-resistant enterococci (VRE), the ED50s for NAI-603 were 1.1 to 1.6 mg/kg i.v., compared to 0.5 mg/kg i.v. of ramoplanin. The bactericidal activity was confirmed in vivo in the rat granuloma pouch model induced by MRSA, where NAI-603, at 40 mg/kg i.v., induced about a 2- to 3-log10-reduction in viable bacteria in the exudates, which persisted for more than 72 h. The pharmacokinetic (PK) profiles of NAI-603 and ramoplanin at 20 mg/kg show similar half-lives (3.27 and 3.80 h, respectively) with the maximum concentration (Cmax) markedly higher for NAI-603 (207 µg/ml versus 79 µg/ml). The favorable pharmacological profile of NAI-603, coupled with the absence of local tolerability issues, supports further investigation.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Depsipeptídeos/química , Acetamidas/farmacologia , Acetamidas/uso terapêutico , Animais , Antibacterianos/química , Enterococcus/efeitos dos fármacos , Feminino , Linezolida , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Oxazolidinonas/farmacologia , Oxazolidinonas/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Teicoplanina/farmacologia , Teicoplanina/uso terapêutico , Vancomicina/farmacologia , Vancomicina/uso terapêutico
16.
ACS Chem Biol ; 9(2): 398-404, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24191663

RESUMO

Among the growing family of ribosomally synthesized, post-translationally modified peptides, particularly intriguing are class III lanthipeptides containing the triamino acid labionin. In the course of a screening program aimed at finding bacterial cell wall inhibitors, we discovered a new lanthipeptide produced by an Actinoplanes sp. The molecule, designated NAI-112, consists of 22 amino acids and contains an N-terminal labionin and a C-terminal methyl-labionin. Unique among lanthipeptides, it carries a 6-deoxyhexose moiety N-linked to a tryptophan residue. Consistently, the corresponding gene cluster encodes, in addition to the LanKC enzyme characteristic of this lanthipeptide class, a glycosyl transferase. Despite possessing weak antibacterial activity, NAI-112 is effective in experimental models of nociceptive pain, reducing pain symptoms in mice in both the formalin and the chronic constriction injury tests. Thus, NAI-112 represents, after the labyrinthopeptins, the second example of a lanthipeptide effective against nociceptive pain.


Assuntos
Analgésicos/química , Antibacterianos/química , Bacteriocinas/química , Micromonosporaceae/química , Peptídeos/química , Sequência de Aminoácidos , Analgésicos/metabolismo , Analgésicos/uso terapêutico , Animais , Antibacterianos/metabolismo , Antibacterianos/uso terapêutico , Bacteriocinas/genética , Bacteriocinas/uso terapêutico , Genes Bacterianos , Glicosilação , Masculino , Camundongos , Micromonosporaceae/genética , Dados de Sequência Molecular , Família Multigênica , Dor/tratamento farmacológico , Peptídeos/genética , Peptídeos/uso terapêutico
17.
Chem Biol ; 20(8): 1067-77, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23932526

RESUMO

Thiopeptides are ribosomally synthesized, posttranslationally modified peptides with potent activity against Gram-positives. However, only GE2270 has yielded semisynthetic derivatives under clinical investigations. The pbt gene cluster from the GE2270 producer Planobispora rosea was successfully expressed in the genetically tractable Nonomuraea ATCC39727. Gene deletions established that PbtO, PbtM1, PbtM2, PbtM3, and PbtM4 are involved in regiospecific hydroxylation and methylations of GE2270, leading to the generation of various derivatives with altered decorations. Further deletions established that PbtH and PbtG1 are involved in C-terminal amide and oxazoline formation, respectively. Surprisingly, preventing either step resulted in the accumulation of linear precursors in which the pyridine-generated macrocycle failed to form, and only one of the pyridine-forming serine residues had been dehydrated. Often, these linear precursors present a shortened C terminus but retain the full set of methylation and hydroxylation decorations.


Assuntos
Actinomycetales/genética , Actinomycetales/metabolismo , Antibacterianos/metabolismo , Peptídeos Cíclicos/metabolismo , Tiazóis/metabolismo , Sequência de Aminoácidos , Antibacterianos/química , Genes Fúngicos , Dados de Sequência Molecular , Família Multigênica , Oxazóis/química , Oxazóis/metabolismo , Peptídeos Cíclicos/química , Peptídeos Cíclicos/genética , Piridinas/química , Piridinas/metabolismo , Tiazóis/química
18.
Antimicrob Agents Chemother ; 55(4): 1671-6, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21220527

RESUMO

NAI-107 is a novel lantibiotic active against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), glycopeptide-intermediate S. aureus (GISA), and vancomycin-resistant enterococci (VRE). The aim of this study was to evaluate the in vivo efficacy of NAI-107 in animal models of severe infection. In acute lethal infections induced with a penicillin-intermediate Streptococcus pneumoniae strain in immunocompetent mice, or with MRSA, GISA, and VRE strains in neutropenic mice, the 50% effective dose (ED(50)) values of NAI-107 were comparable or lower than those of reference compounds, irrespective of the strain and immune status (0.51 to 14.2 mg/kg of body weight for intravenous [i.v.] NAI-107, 5.1 to 22.4 for oral linezolid, and 22.4 for subcutaneous [s.c.] vancomycin). In the granuloma pouch model induced in rats with a MRSA strain, intravenous NAI-107 showed a dose-proportional bactericidal activity that, at a single 40-mg/kg dose, compared with 2 20-mg/kg doses at a 12-h or 24-h interval, caused a 3-log(10)-CFU/ml reduction of viable MRSA in exudates that persisted for more than 72 h. Rat endocarditis was induced with a MRSA strain and treated for five consecutive days. In a first experiment, using 5, 10, or 20 mg/kg/day, and in a second experiment, when 10 mg/kg at 12-h intervals was compared to 20 mg/kg/day, intravenous NAI-107 was effective in reducing the bacterial load in heart vegetations in a dose-proportional manner. Trough plasma levels, as determined on days 2 and 5, were several times higher than the NAI-107 minimal bactericidal concentration (MBC). NAI-107 binding to rat and human serum ranges between 93% and 98.6%. The rapid bactericidal activity of NAI-107 observed in vitro was thus confirmed by the efficacy in several models of experimental infection induced by Gram-positive pathogens, supporting further investigation of the compound.


Assuntos
Antibacterianos/uso terapêutico , Bacteriocinas/uso terapêutico , Animais , Farmacorresistência Bacteriana Múltipla , Endocardite/tratamento farmacológico , Feminino , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Ratos , Ratos Sprague-Dawley , Infecções Estafilocócicas/tratamento farmacológico , Resistência a Vancomicina
19.
J Med Chem ; 50(13): 3077-85, 2007 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-17542573

RESUMO

Ramoplanin is a glycolipodepsipeptide antibiotic active against Gram-positive bacteria including vancomycin-resistant enterococci. Ramoplanin inhibits bacterial cell wall biosynthesis by a mechanism different from that of glycopeptides and hence does not show cross-resistance with these antibiotics. The systemic use of ramoplanin has been so far prevented because of its low local tolerability when injected intravenously. To overcome this problem, the fatty acid side chain of ramoplanin was selectively removed and replaced with a variety of different carboxylic acids. Many of the new ramoplanin derivatives showed antimicrobial activity similar to that of the natural precursor coupled with a significantly improved local tolerability. Among them the derivative in which the 2-methylphenylacetic acid has replaced the di-unsaturated fatty acid side chain (48) was selected as the most interesting compound and submitted to further in vitro and in vivo characterization studies.


Assuntos
Antibacterianos/síntese química , Antifúngicos/síntese química , Depsipeptídeos/síntese química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Hemólise , Testes de Sensibilidade Microbiana , Ratos , Staphylococcus aureus/efeitos dos fármacos , Estereoisomerismo , Streptococcus pyogenes/efeitos dos fármacos , Relação Estrutura-Atividade
20.
J Antibiot (Tokyo) ; 59(9): 543-52, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17136887

RESUMO

16-Membered meta, para-cyclophanes mimicking the vancomycin binding pocket (D-O-E ring) are designed and synthesized. The structural features of these biaryl ether containing macrocycles are: a) the deletion of the carboxyl group of vancomycin's central amino acid (amino acid D); b) the elongation of the N-terminal; c) the presence of lipidated aminoglucose at the D-ring. Cycloetherification by way of an intramolecular nucleophilic aromatic substitution reaction (S(N)Ar) is used as a key step for the construction of the macrocycle. Minimum inhibitory concentrations for all of the derivatives are measured using a standard microdilution assay. Compounds 2a-2c and 3a-3c displayed weak activities against resistant strain Enterococcus faecalis L560 and were inactive against Enterococcus faecium resistant strain L2215.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Enterococcus/efeitos dos fármacos , Resistência a Vancomicina , Vancomicina/análogos & derivados , Antibacterianos/química , Antibacterianos/metabolismo , Sítios de Ligação , Química Farmacêutica , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecium/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Vancomicina/química , Vancomicina/metabolismo , Vancomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...