Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
2.
Pharmaceutics ; 14(9)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36145606

RESUMO

The hematopoietic granulocyte-colony stimulating growth factor (G-CSF, filgrastim) is an approved drug in hematology and oncology. Filgrastim's potential in neurodegenerative disorders is gaining increasingly more attention, as preclinical and early clinical studies suggest it could be a promising treatment option. G-CSF has had a tremendous record as a safe drug for more than three decades; however, its effects upon the central nervous system (CNS) are still not fully understood. In contrast to conceptual long-term clinical application with lower dosing, our present pilot study intends to give a first insight into the molecular effects of a single subcutaneous (s.c.) high-dose G-CSF application upon different regions of the rodent brain. We analyzed mRNA-and in some instances-protein data of neurogenic and non-neurogenic differentiation markers in different regions of rat brains five days after G-CSF (1.3 mg/kg) or physiological saline. We found a continuous downregulation of several markers in most brain regions. Remarkably, cerebellum and hypothalamus showed an upregulation of different markers. In conclusion, our study reveals minor suppressive or stimulatory effects of a single exceptional high G-CSF dose upon neurogenic and non-neurogenic differentiation markers in relevant brain regions, excluding unregulated responses or unexpected patterns of marker expression.

3.
Pharmaceutics ; 14(1)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35057094

RESUMO

The capability of the adult central nervous system to self-repair/regenerate was demonstrated repeatedly throughout the last decades but remains in debate. Reduced neurogenic niche activity paralleled by a profound neuronal loss represents fundamental hallmarks in the disease course of neurodegenerative disorders. We and others have demonstrated the endogenous TGFß system to represent a potential pathogenic participant in disease progression, of amyotrophic lateral sclerosis (ALS) in particular, by generating and promoting a disequilibrium of neurodegenerative and neuroregenerative processes. The novel human/primate specific LNA Gapmer Antisense Oligonucleotide "NVP-13", targeting TGFBR2, effectively reduced its expression and lowered TGFß signal transduction in vitro and in vivo, paralleled by boosting neurogenic niche activity in human neuronal progenitor cells and nonhuman primate central nervous system. Here, we investigated NVP-13 in vivo pharmacology, safety, and tolerability following repeated intrathecal injections in nonhuman primate cynomolgus monkeys for 13 weeks in a GLP-toxicology study approach. NVP-13 was administered intrathecally with 1, 2, or 4 mg NVP-13/animal within 3 months on days 1, 15, 29, 43, 57, 71, and 85 in the initial 13 weeks. We were able to demonstrate an excellent local and systemic tolerability, and no adverse events in physiological, hematological, clinical chemistry, and microscopic findings in female and male Cynomolgus Monkeys. Under the conditions of this study, the no observed adverse effect level (NOAEL) is at least 4 mg/animal NVP-13.

4.
Front Neurol ; 12: 616289, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815246

RESUMO

Objective: Developing an integrative approach to early treatment response classification using survival modeling and bioinformatics with various biomarkers for early assessment of filgrastim (granulocyte colony stimulating factor) treatment effects in amyotrophic lateral sclerosis (ALS) patients. Filgrastim, a hematopoietic growth factor with excellent safety, routinely applied in oncology and stem cell mobilization, had shown preliminary efficacy in ALS. Methods: We conducted individualized long-term filgrastim treatment in 36 ALS patients. The PRO-ACT database, with outcome data from 23 international clinical ALS trials, served as historical control and mathematical reference for survival modeling. Imaging data as well as cytokine and cellular data from stem cell analysis were processed as biomarkers in a non-linear principal component analysis (NLPCA) to identify individual response. Results: Cox proportional hazard and matched-pair analyses revealed a significant survival benefit for filgrastim-treated patients over PRO-ACT comparators. We generated a model for survival estimation based on patients in the PRO-ACT database and then applied the model to filgrastim-treated patients. Model-identified filgrastim responders displayed less functional decline and impressively longer survival than non-responders. Multimodal biomarkers were then analyzed by PCA in the context of model-defined treatment response, allowing identification of subsequent treatment response as early as within 3 months of therapy. Strong treatment response with a median survival of 3.8 years after start of therapy was associated with younger age, increased hematopoietic stem cell mobilization, less aggressive inflammatory cytokine plasma profiles, and preserved pattern of fractional anisotropy as determined by magnetic resonance diffusion tensor imaging (DTI-MRI). Conclusion: Long-term filgrastim is safe, is well-tolerated, and has significant positive effects on disease progression and survival in a small cohort of ALS patients. Developing and applying a model-based biomarker response classification allows use of multimodal biomarker patterns in full potential. This can identify strong individual treatment responders (here: filgrastim) at a very early stage of therapy and may pave the way to an effective individualized treatment option.

5.
Neurotherapeutics ; 18(3): 1963-1979, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33860461

RESUMO

Adult neurogenesis is a target for brain rejuvenation as well as regeneration in aging and disease. Numerous approaches showed efficacy to elevate neurogenesis in rodents, yet translation into therapies has not been achieved. Here, we introduce a novel human TGFß-RII (Transforming Growth Factor-Receptor Type II) specific LNA-antisense oligonucleotide ("locked nucleotide acid"-"NVP-13"), which reduces TGFß-RII expression and downstream receptor signaling in human neuronal precursor cells (ReNcell CX® cells) in vitro. After we injected cynomolgus non-human primates repeatedly i.th. with NVP-13 in a preclinical regulatory 13-week GLP-toxicity program, we could specifically downregulate TGFß-RII mRNA and protein in vivo. Subsequently, we observed a dose-dependent upregulation of the neurogenic niche activity within the hippocampus and subventricular zone: human neural progenitor cells showed significantly (up to threefold over control) enhanced differentiation and cell numbers. NVP-13 treatment modulated canonical and non-canonical TGFß pathways, such as MAPK and PI3K, as well as key transcription factors and epigenetic factors involved in stem cell maintenance, such as MEF2A and pFoxO3. The latter are also dysregulated in clinical neurodegeneration, such as amyotrophic lateral sclerosis. Here, we provide for the first time in vitro and in vivo evidence for a novel translatable approach to treat neurodegenerative disorders by modulating neurogenesis.


Assuntos
Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/antagonistas & inibidores , Esclerose Lateral Amiotrófica/metabolismo , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Macaca fascicularis , Masculino , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Primatas , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/biossíntese
6.
Int J Mol Sci ; 21(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178467

RESUMO

Antisense Oligonucleotides (ASOs) are an emerging drug class in gene modification. In our study we developed a safe, stable, and effective ASO drug candidate in locked nucleic acid (LNA)-gapmer design, targeting TGFß receptor II (TGFBR2) mRNA. Discovery was performed as a process using state-of-the-art library development and screening. We intended to identify a drug candidate optimized for clinical development, therefore human specificity and gymnotic delivery were favored by design. A staggered process was implemented spanning in-silico-design, in-vitro transfection, and in-vitro gymnotic delivery of small batch syntheses. Primary in-vitro and in-vivo toxicity studies and modification of pre-lead candidates were also part of this selection process. The resulting lead compound NVP-13 unites human specificity and highest efficacy with lowest toxicity. We particularly focused at attenuation of TGFß signaling, addressing both safety and efficacy. Hence, developing a treatment to potentially recondition numerous pathological processes mediated by elevated TGFß signaling, we have chosen to create our data in human lung cell lines and human neuronal stem cell lines, each representative for prospective drug developments in pulmonary fibrosis and neurodegeneration. We show that TGFBR2 mRNA as a single gene target for NVP-13 responds well, and that it bears great potential to be safe and efficient in TGFß signaling related disorders.


Assuntos
Oligonucleotídeos Antissenso/genética , Oligonucleotídeos/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Transdução de Sinais/genética , Células A549 , Animais , Linhagem Celular Tumoral , Fibrose/genética , Inativação Gênica/fisiologia , Humanos , Pulmão/fisiologia , Camundongos , RNA Mensageiro/genética
7.
J Magn Reson Imaging ; 50(2): 552-559, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30569457

RESUMO

BACKGROUND: MRI fluid-attenuated inversion recovery (FLAIR) studies reported hyperintensity in the corticospinal tract and corpus callosum of patients with amyotrophic lateral sclerosis (ALS). PURPOSE: To evaluate the lesion segmentation toolbox (LST) for the objective quantification of FLAIR lesions in ALS patients. STUDY TYPE: Retrospective. POPULATION: Twenty-eight ALS patients (eight females, mean age: 50 range: 24-73, mean ALSFRS-R sum score: 36) were compared with 31 age-matched healthy controls (12 females, mean age: 45, range: 25-67). ALS patients were treated with riluzole and additional G-CSF (granulocyte-colony stimulating factor) on a named patient basis. FIELD STRENGTH/SEQUENCE: 1.5 T, FLAIR, T1 -weighted MRI. ASSESSMENT: The lesion prediction algorithm (LPA) of the LST enabled the extraction of individual binary lesion maps, total lesion volume (TLV), and number (TLN). Location and overlap of FLAIR lesions across patients were investigated by registration to FLAIR average space and an atlas. ALS-specific functional rating scale revised (ALSFRS-R), disease progression, and survival since diagnosis served as clinical correlates. STATISTICAL TESTS: Univariate analysis of variance (ANOVA), repeated-measures ANOVA, t-test, Bravais-Pearson correlation, Chi-square test of independence, Kaplan-Meier analysis, Cox-regression analysis. RESULTS: Both ALS patients and healthy controls exhibited FLAIR alterations. TLN significantly depended on age (F(1,54) = 24.659, P < 0.001) and sex (F(1,54) = 5.720, P = 0.020). ALS patients showed higher TLN than healthy controls depending on sex (F(1, 54) = 5.076, P = 0.028). FLAIR lesions were small and most pronounced in male ALS patients. FLAIR alterations were predominantly detected in the superior and posterior corona radiata, anterior capsula interna, and posterior thalamic radiation. Patients with pyramidal tract (PT) lesions exhibited significantly inferior survival than patients without PT lesions (P = 0.013). Covariate age exhibited strong prognostic value for survival (P = 0.015). DATA CONCLUSION: LST enables the objective quantification of FLAIR alterations and is a potential prognostic biomarker for ALS. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:552-559.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico por imagem , Corpo Caloso/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Tratos Piramidais/diagnóstico por imagem , Adulto , Idoso , Algoritmos , Encéfalo/diagnóstico por imagem , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Retrospectivos , Substância Branca/diagnóstico por imagem , Adulto Jovem
8.
Front Neurol ; 9: 971, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534107

RESUMO

Objective: To evaluate safety, tolerability and feasibility of long-term treatment with Granulocyte-colony stimulating factor (G-CSF), a well-known hematopoietic stem cell factor, guided by assessment of mobilized bone marrow derived stem cells and cytokines in the serum of patients with amyotrophic lateral sclerosis (ALS) treated on a named patient basis. Methods: 36 ALS patients were treated with subcutaneous injections of G-CSF on a named patient basis and in an outpatient setting. Drug was dosed by individual application schemes (mean 464 Mio IU/month, range 90-2160 Mio IU/month) over a median of 13.7 months (range from 2.7 to 73.8 months). Safety, tolerability, survival and change in ALSFRS-R were observed. Hematopoietic stem cells were monitored by flow cytometry analysis of circulating CD34+ and CD34+CD38- cells, and peripheral cytokines were assessed by electrochemoluminescence throughout the intervention period. Analysis of immunological and hematological markers was conducted. Results: Long term and individually adapted treatment with G-CSF was well tolerated and safe. G-CSF led to a significant mobilization of hematopoietic stem cells into the peripheral blood. Higher mobilization capacity was associated with prolonged survival. Initial levels of serum cytokines, such as MDC, TNF-beta, IL-7, IL-16, and Tie-2 were significantly associated with survival. Continued application of G-CSF led to persistent alterations in serum cytokines and ongoing measurements revealed the multifaceted effects of G-CSF. Conclusions: G-CSF treatment is feasible and safe for ALS patients. It may exert its beneficial effects through neuroprotective and -regenerative activities, mobilization of hematopoietic stem cells and regulation of pro- and anti-inflammatory cytokines as well as angiogenic factors. These cytokines may serve as prognostic markers when measured at the time of diagnosis. Hematopoietic stem cell numbers and cytokine levels are altered by ongoing G-CSF application and may potentially serve as treatment biomarkers for early monitoring of G-CSF treatment efficacy in ALS in future clinical trials.

9.
Front Neurol ; 9: 614, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30104996

RESUMO

Objective: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative process affecting upper and lower motor neurons as well as non-motor systems. In this study, precentral and postcentral cortical thinning detected by structural magnetic resonance imaging (MRI) were combined with clinical (ALS-specific functional rating scale revised, ALSFRS-R) and neurophysiological (motor unit number index, MUNIX) biomarkers in both cross-sectional and longitudinal analyses. Methods: The unicenter sample included 20 limb-onset classical ALS patients compared to 30 age-related healthy controls. ALS patients were treated with standard Riluzole and additional long-term G-CSF (Filgrastim) on a named patient basis after written informed consent. Combinatory biomarker use included cortical thickness of atlas-based dorsal and ventral subdivisions of the precentral and postcentral cortex, ALSFRS-R, and MUNIX for the musculus abductor digiti minimi (ADM) bilaterally. Individual cross-sectional analysis investigated individual cortical thinning in ALS patients compared to age-related healthy controls in the context of state of disease at initial MRI scan. Beyond correlation analysis of biomarkers at cross-sectional group level (n = 20), longitudinal monitoring in a subset of slow progressive ALS patients (n = 4) explored within-subject temporal dynamics of repeatedly assessed biomarkers in time courses over at least 18 months. Results: Cross-sectional analysis demonstrated individually variable states of cortical thinning, which was most pronounced in the ventral section of the precentral cortex. Correlations of ALSFRS-R with cortical thickness and MUNIX were detected. Individual longitudinal biomarker monitoring in four slow progressive ALS patients revealed evident differences in individual disease courses and temporal dynamics of the biomarkers. Conclusion: A combinatory use of structural MRI, neurophysiological and clinical biomarkers allows for an appropriate and detailed assessment of clinical state and course of disease of ALS.

10.
MAbs ; 9(7): 1052-1064, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28816583

RESUMO

The elicitation of broadly and efficiently neutralizing antibodies in humans by active immunization is still a major obstacle in the development of vaccines against pathogens such as the human immunodeficiency virus (HIV), influenza virus, hepatitis C virus or cytomegalovirus. Here, we describe a mammalian cell surface display and monoclonal antibody (mAb)-mediated panning technology that allows affinity-based selection of envelope (Env) variants from libraries. To this end, we established an experimental setup featuring: 1) single and site specific integration of Env to link genotype and phenotype, 2) inducible Env expression to avoid cytotoxicity effects, 3) translational coupling of Env and enhanced green fluorescent protein expression to normalize for Env protein levels, and 4) display on HEK cells to ensure native folding and mammalian glycosylation. For proof of concept, we applied our method to a chimeric HIV-1 Env model library comprising variants with differential binding affinities to the V3-loop-directed mAbs 447-52D and HGN194. Fluorescence-activated cell sorting selectively enriched a high affinity variant up to 56- and 55-fold for 447-52D and HGN194, respectively, after only a single round of panning. Similarly, the low affinity variants for each antibody could be selectively enriched up to 237-fold. The binding profiles of membrane-bound gp145 and soluble gp140 chimeras showed identical affinity ranking, suggesting that the technology can guide the identification of Env variants with optimized antigenic properties for subsequent use as vaccine candidates. Finally, our mAb-based cellular display and selection strategy may also prove useful for the development of prophylactic vaccines against pathogens other than HIV.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/isolamento & purificação , Citometria de Fluxo/métodos , Proteínas do Envelope Viral/imunologia , Células HEK293 , Humanos
11.
Front Neurol ; 8: 669, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29326641

RESUMO

Amyotrophic lateral sclerosis (ALS) represents a fatal orphan disease with high unmet medical need, and a life time risk of approx. 1/400 persons per population. Based on increasing knowledge on pathophysiology including genetic and molecular changes, epigenetics, and immune dysfunction, inflammatory as well as fibrotic processes may contribute to the heterogeneity and dynamics of ALS. Animal and human studies indicate dysregulations of the TGF-ß system as a common feature of neurodegenerative disorders in general and ALS in particular. The TGF-ß system is involved in different essential developmental and physiological processes and regulates immunity and fibrosis, both affecting neurogenesis and neurodegeneration. Therefore, it has emerged as a potential therapeutic target for ALS: a persistent altered TGF-ß system might promote disease progression by inducing an imbalance of neurogenesis and neurodegeneration. The current study assessed the activation state of the TGF-ß system within the periphery/in life disease stage (serum samples) and a late stage of disease (central nervous system tissue samples), and a potential influence upon neuronal stem cell (NSC) activity, immune activation, and fibrosis. An upregulated TGF-ß system was suggested with significantly increased TGF-ß1 protein serum levels, enhanced TGF-ß2 mRNA and protein levels, and a strong trend toward an increased TGF-ß1 protein expression within the spinal cord (SC). Stem cell activity appeared diminished, reflected by reduced mRNA expression of NSC markers Musashi-1 and Nestin within SC-paralleled by enhanced protein contents of Musashi-1. Doublecortin mRNA and protein expression was reduced, suggesting an arrested neurogenesis at late stage ALS. Chemokine/cytokine analyses suggest a shift from a neuroprotective toward a more neurotoxic immune response: anti-inflammatory chemokines/cytokines were unchanged or reduced, expression of proinflammatory chemokines/cytokines were enhanced in ALS sera and SC postmortem tissue. Finally, we observed upregulated mRNA and protein expression for fibronectin in motor cortex of ALS patients which might suggest increased fibrotic changes. These data suggest that there is an upregulated TGF-ß system in specific tissues in ALS that might lead to a "neurotoxic" immune response, promoting disease progression and neurodegeneration. The TGF-ß system therefore may represent a promising target in treatment of ALS patients.

12.
PLoS One ; 9(10): e109196, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25279768

RESUMO

An increasing number of broadly neutralizing monoclonal antibodies (bnMAb) against the HIV-1 envelope (Env) protein has been discovered recently. Despite this progress, vaccination efforts with the aim to re-elicit bnMAbs that provide protective immunity have failed so far. Herein, we describe the development of a mammalian cell based FACS-panning method in which bnMAbs are used as tools to select surface-exposed envelope variants according to their binding affinity. For that purpose, an HIV-1 derived lentiviral vector was developed to infect HEK293T cells at low multiplicity of infection (MOI) in order to link Env phenotype and genotype. For proof of principle, a gp145 Env model-library was established in which the complete V3 domain was substituted by five strain specific V3 loop sequences with known binding affinities to nMAb 447-52D, respectively. Env genes were recovered from selected cells by PCR, subcloned into a lentiviral vector (i) to determine and quantify the enrichment nMAb binders and (ii) to generate a new batch of transduction competent particles. After 2 selection cycles the Env variant with highest affinity was enriched 20-fold and represented 80% of the remaining Env population. Exploiting the recently described bnMAbs, this procedure might prove useful in selecting Env proteins from large Env libraries with the potential to elicit bnMAbs when used as vaccine candidates.


Assuntos
Vacinas contra a AIDS , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Anticorpos Neutralizantes , Clonagem Molecular/métodos , Vetores Genéticos , Células HEK293 , Humanos , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...