RESUMO
Antimicrobial resistance (AMR) is a threat to global public health. However, unsatisfactory approaches to directly measuring the AMR burden carried by individuals has hampered efforts to assess interventions aimed at reducing selection for AMR. Metagenomics can provide accurate detection and quantification of AMR genes within an individual person's faecal flora (their gut "resistome"). Using this approach, we aimed to test the hypothesis that differences in antimicrobial use across different hospitals in the United Kingdom will result in observable differences in the resistome of individual patients. Three National Health Service acute Hospital Trusts with markedly different antibiotic use and Clostridioides difficile infection rates collected faecal samples from anonymous patients which were discarded after C. difficile testing over a period of 9 to 15 months. Metagenomic DNA was extracted from these samples and sequenced using an Illumina NovaSeq 6000 platform. The resulting sequencing reads were analysed for taxonomic composition and for the presence of AMR genes. Among 683 faecal metagenomes we found huge variation between individuals in terms of taxonomic diversity (Shannon Index range 0.10-3.99) and carriage of AMR genes (Median 1.50 genes/cell/sample overall). We found no statistically significant differences in diversity (median Shannon index 2.16 (IQR 1.71-2.56), 2.15 (IQR 1.62-2.50) and 2.26 (IQR 1.55-2.51)) or carriage of AMR genes (median 1.37 genes/cell/sample (IQR 0.70-3.24), 1.70 (IQR 0.70-4.52) and 1.43 (IQR 0.55-3.71)) at the three trusts respectively. This was also the case across the sample collection period within the trusts. While we have not demonstrated differences over place or time using metagenomic sequencing of faecal discards, other sampling frameworks may be more suitable to determine whether organisational level differences in antibiotic use are associated with individual-level differences in burden of AMR carriage.
Assuntos
Anti-Infecciosos , Clostridioides difficile , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Metagenoma , Clostridioides difficile/genética , Medicina Estatal , Farmacorresistência Bacteriana/genética , Anti-Infecciosos/farmacologia , Metagenômica/métodosRESUMO
BACKGROUND: Strategies to reduce antibiotic overuse in hospitals depend on prescribers taking decisions to stop unnecessary antibiotic use. There is scarce evidence for how to support these decisions. We evaluated a multifaceted behaviour change intervention (ie, the antibiotic review kit) designed to reduce antibiotic use among adult acute general medical inpatients by increasing appropriate decisions to stop antibiotics at clinical review. METHODS: We performed a stepped-wedge, cluster (hospital)-randomised controlled trial using computer-generated sequence randomisation of eligible hospitals in seven calendar-time blocks in the UK. Hospitals were eligible for inclusion if they admitted adult non-elective general or medical inpatients, had a local representative to champion the intervention, and could provide the required study data. Hospital clusters were randomised to an implementation date occurring at 1-2 week intervals, and the date was concealed until 12 weeks before implementation, when local preparations were designed to start. The intervention effect was assessed using data from pseudonymised routine electronic health records, ward-level antibiotic dispensing, Clostridioides difficile tests, prescription audits, and an implementation process evaluation. Co-primary outcomes were monthly antibiotic defined daily doses per adult acute general medical admission (hospital-level, superiority) and all-cause mortality within 30 days of admission (patient level, non-inferiority margin of 5%). Outcomes were assessed in the modified intention-to-treat population (ie, excluding sites that withdrew before implementation). Intervention effects were assessed by use of interrupted time series analyses within each site, estimating overall effects through random-effects meta-analysis, with heterogeneity across prespecified potential modifiers assessed by use of meta-regression. This trial is completed and is registered with ISRCTN, ISRCTN12674243. FINDINGS: 58 hospital organisations expressed an interest in participating. Three pilot sites implemented the intervention between Sept 25 and Nov 20, 2017. 43 further sites were randomised to implement the intervention between Feb 12, 2018, and July 1, 2019, and seven sites withdrew before implementation. 39 sites were followed up for at least 14 months. Adjusted estimates showed reductions in total antibiotic defined daily doses per acute general medical admission (-4·8% per year, 95% CI -9·1 to -0·2) following the intervention. Among 7â160â421 acute general medical admissions, the ARK intervention was associated with an immediate change of -2·7% (95% CI -5·7 to 0·3) and sustained change of 3·0% (-0·1 to 6·2) in adjusted 30-day mortality. INTERPRETATION: The antibiotic review kit intervention resulted in sustained reductions in antibiotic use among adult acute general medical inpatients. The weak, inconsistent intervention effects on mortality are probably explained by the onset of the COVID-19 pandemic. Hospitals should use the antibiotic review kit to reduce antibiotic overuse. FUNDING: UK National Institute for Health and Care Research.
Assuntos
Antibacterianos , Hospitais , Adulto , Humanos , Antibacterianos/uso terapêutico , COVID-19 , Hospitalização , PandemiasRESUMO
OBJECTIVES: Initiatives to curb hospital antibiotic use might be associated with harm from under-treatment. We examined the extent to which variation in hospital antibiotic prescribing is associated with mortality risk in acute/general medicine inpatients. METHODS: This ecological analysis examined Hospital Episode Statistics from 36,124,372 acute/general medicine admissions (≥16y) to 135 acute hospitals in England, 01/April/2010-31/March/2017. Random-effects meta-regression was used to investigate whether heterogeneity in adjusted 30-day mortality was associated with hospital-level antibiotic use, measured in defined-daily-doses (DDD)/1,000 bed-days. Models also considered DDDs/1,000 admissions and DDDs for narrow-spectrum/broad-spectrum antibiotics, parenteral/oral, and local interpretations of World Health Organization Access, Watch, and Reserve antibiotics. RESULTS: Hospital-level antibiotic DDDs/1,000 bed-days varied 15-fold with comparable variation in broad-spectrum, parenteral, and Reserve antibiotic use. After extensive adjusting for hospital case-mix, the probability of 30-day mortality changed -0.010% (95% CI: -0.064,+0.044) for each increase of 500 hospital-level antibiotic DDDs/1,000 bed-days. Analyses of other metrics of antibiotic use showed no consistent association with mortality risk. CONCLUSIONS: We found no evidence that wide variation in hospital antibiotic use is associated with adjusted mortality risk in acute/general medicine inpatients. Using low-prescribing hospitals as benchmarks could help drive safe and substantial reductions in antibiotic consumption of up-to one-third in this population.
Assuntos
Antibacterianos , Hospitais , Inglaterra/epidemiologia , HumanosRESUMO
In resource-limited settings, early mortality on antiretroviral therapy (ART) is approximately 10%; yet, it is unclear how much of that mortality occurs in care or after lost to follow-up. We assessed mortality rates and predictors of death among 12,222 nonpregnant ART-naive adults initiating first-line ART between April 2004 and May 2012 in South Africa, stratified by person-years in care and lost. We found 14.6% of patients died and being lost accounted for a minority of deaths across multiple definitions of loss (population attributable-risk percent ranged from 10.4% to 42.5%). Although mortality rates in patients lost were much higher than in care, most ART-related mortality occurred on treatment.