RESUMO
Electrochemical profiling of formaldehyde-inactivated poliovirus particles demonstrated a relationship between the D-antigen concentration and the intensity of the maximum amplitude currents of the poliovirus samples. The resultant signal was therefore identified as electrochemical oxidation of the surface proteins of the poliovirus. Using registration of electrooxidation of amino acid residues of the capsid proteins, a comparative electrochemical analysis of poliovirus particles inactivated by electrons accelerated with doses of 5 kGy, 10 kGy, 15 kGy, 25 kGy, 30 kGy at room temperature was carried out. An increase in the radiation dose was accompanied by an increase in electrooxidation signals. A significant increase in the signals of electrooxidation of poliovirus capsid proteins was detected upon irradiation at doses of 15-30 kGy. The data obtained suggest that the change in the profile and increase in the electrooxidation signals of poliovirus capsid proteins are associated with an increase in the degree of structural reorganization of surface proteins and insufficient preservation of the D-antigen under these conditions of poliovirus inactivation.