RESUMO
Antimicrobial resistance poses one of the greatest threats to global health and there is an urgent need for new therapeutic options. Phages are viruses that infect and kill bacteria and phage therapy could provide a valuable tool for the treatment of multidrug-resistant infections. In this study, water samples collected by citizen scientists as part of the Citizen Phage Library (CPL) project, and wastewater samples from the Environment Agency yielded phages with activity against clinical strains Klebsiella pneumoniae BPRG1484 and Enterobacter cloacae BPRG1482. A total of 169 and 163 phages were found for K. pneumoniae and E. cloacae, respectively, within four days of receiving the strains. A third strain (Escherichia coli BPRG1486) demonstrated cross-reactivity with 42 E. coli phages already held in the CPL collection. Seed lots were prepared for four K. pneumoniae phages and a cocktail combining these phages was found to reduce melanisation in a Galleria mellonella infection model. The resources and protocols utilised by the Citizen Phage Library enabled the rapid isolation and characterisation of phages targeted against multiple strains. In the future, within a clearly defined regulatory framework, phage therapy could be made available on a named-patient basis within the UK.
RESUMO
BACKGROUND: Multidrug-resistant Klebsiella pneumoniae spp. (kp) are emerging agents of severe infections of the respiratory, urinary tract and wounds that can progress to fatal septicemia. The use of bacteriophages is currently being considered as an effective alternative or adjuvant to antibiotic therapy. RESULTS: In this study, we report capsule (K)-typing of 163 carbapenem-resistant Kp (CRKP) isolated 2014-2018 at the Military Hospital of Instruction of Tunis (MHT), Tunisia, by partial amplification and sequencing of the Kp wzi gene. The most prevalent K-type overall was K64 with 50.3% followed by K17 and K27 (22.7 and 11.0%, respectively). K64 Kp strains were most common and associated with increased case/fatality rates, especially at the intensive care unit (ICU). Using a K64 Kp strain we isolated and characterized a lytic Kp phage, vB_KpP_TUN1 (phage TUN1), from wastewater samples of the ICU at the MHT. TUN1 belongs to the Autographiviridae family and specifically digests K64 Kp capsules most probably via a depolymerase encoded by gp47. Furthermore, we successfully assembled phage TUN1 in a non-replicative host (E. coli) raising the possibility of in vitro assembly in the absence of live bacterial hosts. We propose that phage TUN1 is a promising candidate to be used as an adjuvant or an alternative to antibiotic therapy in CRKP infections, facilitating regulatory approval of phage therapy. CONCLUSIONS: K64, K17 and K27 are the most common wzi capsule types in this geographical location in Northern Africa. The lytic phage TUN1 efficiently lyses K64 Kp strains associated with increased case/fatality rates at body temperature. Together with its ability to be rescued in a non-replicative host these features enhance the utility of this phage as an antibacterial agent.
Assuntos
Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/virologia , Humanos , TunísiaRESUMO
Purpose of Review: The world is currently facing the largest global health crisis since the early 1900s due to a novel coronavirus. While SARS-CoV-2 infection causes predictable symptoms in COVID-19 patients, including upper respiratory distress and fever, the heterogeneity of manifestations is surprising. This review focuses on direct and indirect causes of myocardial injury in COVID-19 patients and highlights current knowledge, treatment strategies, and outstanding questions in the field. Recent Findings: Data are emerging that highlight the extent of cardiovascular involvement in COVID-19 patients, including evidence that SARS-CoV-2 causes myocarditis and increases cardiac risk. The incidence of cardiac injury is much greater in patients with severe disease presentation and those in intensive care. Summary: During the past year, COVID-19 patient mortality rates have improved due to tailored pharmacological treatments and patient management strategies that address the unique presentation of symptoms, which will hopefully also reduce the incidence of cardiac injury.